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“All the matter that makes up all the living organisms and ecosystems,
planets and stars, throughout every galaxy in the universe, is made of
atoms, and 99.9% of the mass of all the atoms in the (visible) universe
comes from the nuclei at their centers which are over 10,000 times smaller
in diameter than the atoms themselves”

NRC Decadal Study Report



Philip Bredesen, Governor of Tennessee 2003-2011, PAC05 welcome address
(he earned a bachelor's degree in physics in 1967 from Harvard University in 1967)

We are doing an inadequate job of explaining why what we do is
important

“People who truly understand something, who truly have command of a subject,
can explain it at some level to anyone who asks and is willing to try to understand
an answer. The point is that if you were asked about something and had to resort to
that's all very complicated and until you take a course in differential equations and
then give me a blackboard I can't possibly make you understand, that that was more
often a signal of a failure of the physicist to have a real command of the issue than
of the failure of the person asking the question.

I have adapted it to my own life is the " Wal-Mart Test." When I propose to take
some course of action in the public sector, I do a thought experiment and imagine
how I will explain it to the Wal-Mart checkout person. Let me clear that I don't
mean in any way dumbing-down the idea, I mean taking the principle that if I
understand well enough what I am doing, I can cogently explain it to another human
being with a different reference point. If I can successfully do this thought
experiment, I have the makings of a plan.”

What about YOU?



The Nuclear Landscape and the Big Questions (NAS report)

How did visible matter come into being and how does it
evolve? (origin of nuclei and atoms)

How does subatomic matter organize itself and what
phenomena emerge? (self-Grganization)

Are the fundamental interactions that are basic to the
structure of matter fully understood?

How can the knowledge and: technological progress

provided by nuclear phstiE:s_'best be us‘ed to benefit society?
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- “after Big Bang (13.8 billion years ago)
D, 34He, "Be/’Li formed 3-50. min after Big
Bang ., ' '
Other nuclei born laterin heavy stars and
supernovae




How did visible matter come into being and how
does it evolve?

The radioactive galaxy demonstrates the continuing formation of new
radioactive isotopes.
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A 'snapshot’ view of ongoing nucleosynthesis in the Galaxy
by COMPTEL and INTEGRAL...




How are atoms cooked in the Cosmos?
Chemical evolution
A LOFT (early 2020s ?, ESA)

Hubble

— SS
Most elements are created in violent stellar proc®

explosions, and orbiting telescopes are
capable of measuring these creation rates. Keck

To interpret observations, however, we must 13
understand reactions occurring in stellar o
. explosions that create and destroy rare
. isotopes.
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The radioactive galaxy demonstrates the continuing formation of new
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How are nuclei made?
Origin of elements, isotopes
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.S Hot and dense quark-gluon matter
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Nuclear structure

Nuclear reactions

New standard model

Applications of nuclear science

To explain, predict, use...

Effective Field Theory




Theory of nuclei is demanding

rooted in QCD

insights from EFT
many-body interactions
in-medium renormalization

Input

microscopic functionals Forces, operators ML
low-energy coupling constants ‘ 1003
optimized to data n
crucial insights from exotic 240Pu
nuclei 298U
Many-body Open
dynamics channels

many-body techniques
o direct ab initio schemes
o microscopic ClI
o huclear DFT
high-performance computing

* nuclear structure impacted by couplings
to reaction and decay channels

« clustering, alpha decay, and fission still
remain major challenges for theory

* unified picture of structure and reactions



The frontier: neutron-rich calcium isotopes
probing nuclear forces and shell structure in a neutron-rich medium
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Assessing the limits of the nuclear landscape
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Quantified Nuclear Landscape (2)
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How does subatomic matter organize itself and what phenomena emerge?

What do regular patterns in the behavior of
nuclei tell us about the nature of nuclear forces?

Shell energy
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Regularities and
periodicities in
atoms and nuclei
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How does subatomic matter organize itself and what phenomena emerge?

What is the nature of emergent
atomic nuclei? Nucleonic pairin
and isospin channels; in finite n
nucleonic matter. New collectivg
skins and angular momentum. ]
collective motion, such as fissig

coexistence.

How can finite nuclei exhibit phase 'SOLDE, iThemba, HIyS, RCNF,
behavior? Phase transitions betwe Birmingham...
characterized by different many-bo THEORY:
Critical- and triple point searches ac-arurrouorros
particle number, spin, and temperature. Re-entrant

phenomena.

How can nuclear structure and reactions be

described in a unified way? Understanding the role
of the quantum openness in nuclei. Elucidating the | N
role of reaction thresholds on appearance of

collective cluster states.
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The landscape of two-proton radioactivity

E. Olsen et al,

PRL 111, 139903 (2013); E: PRL 111, 139903 (2013)
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From nuclei to neutron stars (a multiscale problem)

Gandolfi et al. PRC85, 032801 (2012)
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Limits of Mass and Charge: Superheavies
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Half-life, Ty, (s)

Towards long-lived Superheavy Nuclei

S. Cwiok, P.H. Heenen, W. Nazarewicz
Nature, 433, 705 (2005)
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Are the fundamental interactions that are basic to the structure

of matter fully understood?
Rare isotopes with enhanced sensitivity to fundamental symmetries provide
opportunities for discovering new physics beyond the Standard Model

Experimental tests of the Standard Model

» Searches of atomic EDM in rare isotopes

» Tests of parity violation (anapole moment of Fr)

» Studies of superallowed 3 decays in N=Z nuclei to test the CKM matrix
unitarity

* [B-v angular correlation for the search of exotic scalar and tensor couplings

* Measurement of asymmetry-longitudinal polarization correlation in 3 decay
to test deviations from maximal parity violation

Nuclear structure calculations relevant to SM tests

» Isospin mixing corrections for superallowed beta decays

» Calculations of nuclear anapole moments for parity violation tests

« Calculations of Schiff moments for atomic EDM searches

« Calculations of nuclear 2vp and Ovpf matrix elements and comparison
with observables



Rare Isotopes and fundamental symmetry tests
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Theoretical Tools and Connections to Computational Science

1teraflop=10"2 flops Tremendous opportunities

1peta=1015 flops (today) for nuclear theory!

1exa=10"'8flops (next 10 years)
33.9 pflops

NAME SPECS SITE COUNTRY CORES Ax PFLOP/s  POWER mw
Tianhe-2 (Milkyway-2) ~ NUDT, Intel Ivy Bridge (12C, 2.2 GHz) & Xeon Phi (57C, 1.1 GHz), Custom interconnect NSCC Guangzhou China 3,120,000 33.9 17.8
Titan Cray XK7, Operon 6274 (16C 2.2 GHz) + Nvidia Kepler GPU, Custom interconnect DOE/SC/ORNL USA 560,640 17.6 8.2
Sequoia IBM BlueGene/Q, Power BQC (16C 1.60 GHz), Custom interconnect DOE/NNSA/LLNL USA 1,572,864 17.2 7.9
K computer Fujitsu SPARC64 VIlIfx (8C, 2.0GHz), Custom interconnect RIKEN AICS Japan 705,024 10.5 12.7
Mira IBM BlueGene/Q, Power BQC (16C, 1.60 GHz), Custom interconnect DOE/SC/ANL USA 786,432 8.59 3.95
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IF(Q)!

state-of-the-art computing

Wiringa et al. Phys. Rev. C 89,
024305 (2014); A. Lovato et al.,
Phys. Rev. Lett. 112, 182502 (2014)
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Experimental context: some thoughts...

- Beam time is difficult to get and expensive. Theory should

be more involved in assessing the impact of planned runs and
projects.
« Helping planning future experiments and experimental programs
« Assessing the uniqueness and usefulness of an observable, i.e., its
information content with respect to current theoretical models
» Are estimated errors of measured observables meaningful?
« What experimental data are crucial for better constraining current

nuclear models?
* New technologies are essential for providing predictive

capability, to estimate uncertainties, and to assess
extrapolations

» Theoretical models are often applied to entirely new nuclear systems
and conditions that are not accessible to experiment

Voyage to
SUPERHEAVY Island




Information content of future measurements

Nuclear theory is developing tools to deliver uncertainty quantification and error
analysis for the assessment of new experimental data. Theoretical tools can also be
used to assess the information content of an observable with respect to current
theoretical models, and evaluate the degree of correlation between different
observables.
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"It is exceedingly diffictiltto make predictions, particularly. apout the
future””( iels |




Some Anticipated NS/NA Greatest Hits: next 20 years

7_'7
» We will know the site of the r-process ” 0

» We will understand the weak interaction rates that drive electron-capture supernovae

. V}[/e will understand the origin of the abundance patterns seen in the oldest observable
stars

« We will know the nuclear equation of state for normal and neutron matter from 0.1 to
twice the saturation density

» We will have predictive theory — based on forces firmly rooted in QCD — that will tell
us the limits of isotopes and elements

» We will know if long-lived superheavy elements exist in nature

» We will understand the mechanism of clustering and other aspects of open many-
body systems

« We will have a quantitative microscopic model of light-ion fusion and heavy-nuclei
fission trr:at will provide the missing data for nuclear security, astrophysics, and energy
researc

« We will improve the sensitivity of EDM searches in atoms by one to two orders of
magnitude over current limits

 We IWi|| compute essential nuclear matric elements for fundamental symmetry tests in
nuclei



Philip Bredesen, cont.

Big science has had a great run for the last 60 years: Manhattan
project, Sputnik and space exploration, the explosion and
excitement of particle physics and accelerator; the rationale was
obvious and easy. But those rationales are getting long in the tooth
now, and need to be reinvigorated.

(...) the reality is that resources are scarce, the reality is that big
science needs resources that only the government can supply, and
the reality is that those scarce resources will go to those things that
ordinary citizens think are important to themselves and to their
children and to our nation. That's our job, to remake that connection
in the 21st century.

There's nothing wrong or demeaning in this; even Michelangelo
had patrons who had a seat at the table and needed to be satisfied.



Outlook

The study of atomic nuclei makes the connection between the
fundamental building block of matter, complex systems, and the cosmos

» Cool
* Deals with fundamental and complex

* [nterdisciplinary
* Relevant

« Significant progress and discoveries worldwide in the physics of nuclei
and nuclear astrophysics

« Comprehensive and validated theory of nuclei on the horizon
« World-class science program

Thank You|
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The Nuclear Landscape...

...as seen by the QCD phase diagram ...as seen by astrophysicists

Vela Pulsar

http;/}/}@@sips.aps.org/articles/v3/44
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The Grand Nuclear Landscape
(finite nuclei + extended nucleonic matter)
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The challenge and the prospect:
NN scattering on Lattice
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Optimizing the nuclear force
input matters: garbage in, garbage out

The derivative-free minimizer POUNDERS
was used to systematically optimize NNLO
chiral potentials

The optimization of the new interaction
NNLO,, yields a x2/datum = 1 for laboratory
NN scattering energies below 125 MeV. The
new interaction yields very good agreement
with binding energies and radii for A=3,4
nuclei and oxygen isotopes

Ongoing: Optimization of NN + 3NF

A. Ekstrom et al., Phys. Rev. Lett. 110, 192502 (2013)

1 1 1 1 1 1 1 1 1 1 1 1
15 16 17 18 19 20 21 22 23 24 25 26
mass number A
http://science.energy.gov/np/highlights/2014/np-2014-05-¢e/

Used a coarse-grained representation of the
short-distance interactions with 30
parameters

The optimization of a chiral interaction in
NNLO yields a x?/datum = 1 for a mutually
consistent set of 6713 NN scattering data

Covariance matrix yields correlation between
LECCs and predictions with error bars.

Navarro Perez, Amaro, Arriola,
Phys. Rev. C 89, 024004 (2014) and
arXiv:1406.0625

T T 5.5 T T T3 T T T

c3 [GeV‘l]
S
o

o
1 =
L T T T T T T T

-3 -2 -1 0 1 2 3
cy [GeV_l]

This work ~ Emp./Rec. [36—41]  § she
E; (MeV) Input 2.224575(9) Ir
n 0.02473(4) 0.0256(5) 0.02.
Ag (fm!/?) 0.8854(2) 0.8845(8) 0.88
ryp (fm) 1.9689(4) 1.971(6) 1.96.
Op (fm?) 0.2658(5) 0.2859(3) 0.26
Pp 5.30(3) 5.67(4) 5.62
r~ fm™")  0.4542(2) 0.45.




o0
)

Single-proton energies (MeV)

Yue Shi et al., PRC 90, 014308 (2014)
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How to explain the nuclear landscape from the bottom up? Theory roadmap

Nuclear Landscape

Ab initio
Configuration Interaction
Density Functional Theory

w 7
5 50 Lo '
o N : .
(e # terra incognita
. 82
Determining the nucleon interactions

8 / from QCD/symmetries of QCD

£ I‘g neut, initio, wi
w Ab initio, with NN and 3N forces:
= Quantum Monte Carlo 12C
= No-Core Shell Model 14F, 14C
= Coupled-Cluster 17F, 56Ni, 61Ca




Profound intersections
subfemto...
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any of Nuclei

How do collective
phenomena emerge from
simple constituents?

How can complex systems
display astonishing

undamental

<

How do nuclei shape
the physical universe?
What is the origin of

interactions

simplicities? the elements?
What are unique
properties of open What is the New
\sys‘rems? / Standard Model?




Some nuclei are more important than others

Over the last decade, tremendous progress has been made in
techniques to produce and describe designer nuclei, rare
atomic nuclei with characteristics adjusted to specific research

needs and applications

nuclear structure tests of
fundamental laws

of nature

applications

149Th o\




r-process

The r-process is thought to occur ineMs el G S ‘5 Future facility reach

or

q (FRIB)

produces half of the atomic nuclei . . | \a Rl . %"L

heavier than iron

AT
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Chimera model: B12-WH07  Time = 400 ms
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Bruenn et al., APJL 767, L6 (2013)
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‘= Masses, T,,,, P, values
‘= n- capture reactions through surrogate (d,p) transfer studies




