And now for something completely different

Isospin

- Isospin formalism
 - assume nuclear force is charge independent.
- Introduce isospin, T
 - Proton, T = $\frac{1}{2}$, T_z = - $\frac{1}{2}$
 - Neutron, T = $\frac{1}{2}$, T_z = $\frac{1}{2}$
 - $T_z = (N-Z)/2$
- General rule:
 - T has lowest possible value for given T_z.

⁵⁶ Cu	⁵⁷ Cu	⁵⁸ Cu	⁵⁹ Cu
⁵⁵ Ni	⁵⁶ Ni	⁵⁷ Ni	⁵⁸ Ni
⁵⁴ Co	⁵⁵ Co	⁵⁶ Co	⁵⁷ Co
⁵³ Fe	⁵⁴ Fe	⁵⁵ Fe	⁵⁶ Fe

Fermi Matrix Elements

Super allowed Fermi transitions

- Standard model test
- Super allowed Fermi Transitions
 - $0^+ \rightarrow 0^+$ transitions
 - Same T
 - Gamow-Teller can't contribute
- Simple matrix element
- Constant log*ft*

$$f(Z'E_0)t_{\frac{1}{2}} = \frac{K}{g^2 B(F)^2} = \frac{K}{2g^2}$$

National Science Foundation Michigan State University

H.I. Park et al., PRL 112 102502 (2014) EBSS 2014

Super allowed Fermi transitions: A = 38

- Experimental Constraints
 - T_{1/2}, branching ratios to 0.05%
 - Masses to 100's eV
 - Understanding of corrections

$$f(Z'E_0)t_{\frac{1}{2}} = \frac{K}{g^2B(F)^2} = \frac{K}{2g^2}$$

National Science Foundation Michigan State University

H.I. Park et al., PRL 112 102502 (2014) J.C. Hardy and I.S.Towner, Hyperfine Int., 132, 115, (2001)

Super allowed Fermi transitions: All data

- Uncorrected ft values
 - Large spread due to corrections
- Corrected ft values
 - Isospin-symmetry breaking
 - Radiative corrections
- Current value
 - 3072 s

National Science Foundation Michigan State University

H.I. Park et al., PRL 112 102502 (2014) J.C. Hardy and I.S.Towner, Hyperfine Int., 132, 115, (2001)

Isospin mixing

- Isospin not perfect.
- States with same J^π and different isospin can mix

Courtesy V. Tripathi

Isospin mixing

Courtesy V. Tripathi

Isomers

- Excited metastable nuclear states.
- Half-life greater than ns.
- Wide range of excitation energies and half-lives.
- Simple configurations.
 - Many can be related to a few singleparticle shell model states.
- Energies and half-lives can inform nuclear models.
- Isomer decay is varied
 - Gamma-ray, Beta-decay, Proton, Fission, …

Question

- Consider a pair of nucleons isolated to a g_{9/2} singleparticle state.
- What are the allowed spins?
- A 0⁺, 1⁺, 2⁺, 3⁺, 4⁺, 5⁺, 6⁺, 7⁺, 8⁺, 9⁺
- B 0⁺, 2⁺, 4⁺, 6⁺, 8⁺
- C 0⁺, 1⁺, 3⁺, 7^{+,} 9⁺
- D 1⁺, 3⁺, 7⁺,9⁺
- E 0⁺, 8⁺

Isomers

- Pair of particles in well isolated single particle orbital.
 - Protons at N = 50
 - Neutrons at Z = 82
- Low-energy transition.

National Science Foundation Michigan State University

A. Gottardo *et al.*, Phys. Rev. Lett. 109, 162502 (2012) H. Grawe *et al.*, Prog. Nucl. Part. Phys. 38, 15, (1997)

EBSS 2014

N = 82

Courtesy S. Nishimura

National Science Foundation Michigan State University

H. Watanabe et al., Phys. Rev. Lett. 111, 152501 (2013)

EBSS 2014

N = 40

- Region around N = 40
- Drop in 2⁺ energy below ⁶⁸Ni.

Ni

Fe

- Region around N = 40
- Drop in 2⁺ energy below ⁶⁸Ni.

$$M_{fi} = \left\langle \varphi_f^* | \sigma \tau | \varphi_i \right\rangle$$

Strong preference for

spin-flip transition:

$$f_{5/2} \rightarrow f_{7/2}$$

Mass 69 chain

⁶⁹Co isomer

Population of isomer Multiple betachanges based on decaying states 20 $^{69}\text{Co} \rightarrow ^{69}\text{Ni}$ production. inferred. 16 Counts / 10 ms $^{69}\text{Fe} \rightarrow ^{69}\text{Co} \rightarrow ^{69}\text{Ni}$ 12 8 <~400 60 4 Counts / 5 ms 0 200 400 600 800 1000 0 Time (ms) 20 7/2-0 $\pi f_{7/2}^{-1}$ 1200 ⁶⁹Co₄₂ 40 Counts / 5 ms Counts / 20 ms 30 800 20 millen werten der aussenderter fülgen ^{69m1}Co 69m2Co 400 69 Nj 69 Ni 10 bka bkg 0 200 0 400 600 800 1000 400 600 0 200 Time (ms) Time (ms)

National Science Foundation Michigan State University

1000

800

⁶⁹Co isomer

- States attributed to excitations across Z = 28 observed throughout the Co, Ni, Cu isotopic chains.
- Require the application if multiple complimentary probes.

$$\pi p_{3/2}^{+1} \frac{1/2^{-} 1095}{1/2^{-} 492} \frac{1/2^{-} <400}{1/2^{-} <400}$$

$$\pi f_{7/2}^{-1} \frac{7/2^{-} 0}{6^{5}CO_{38}} \frac{7/2^{-} 0}{6^{7}CO_{40}} \frac{7/2^{-} 0}{6^{9}CO_{42}}$$

Long-lived Isomers: ²¹²Bi

- One proton, three neutrons removed from ²⁰⁸Pb.
- Proton $h_{9/2}$
- Neutron i_{11/2}, g_{9/2}
- Should be amenable to shell model treatment.
- Isomer predicted at 1486 keV.
- Inferred from beta decay at higher energy.

>17- ? > 1900

8,9 - 250(30)

1- _____ 0

²¹²Bi: Storage rings

Courtesy P. Walker

²¹²Bi: Schottky mass spectrometry

Courtesy P. Walker

National Science Foundation Michigan State University

Chen et al., Phys. Rev. Lett. 110 (2013) 122502

²¹²Bi: Schottky mass spectrometry

Courtesy P. Walker

²¹²Bi

- Previous value 7.0 (3) min
- Current value > 30 min
- Difference due to high charge state
- Implies highly converted electron conversion transition.
- New half-life resolves log *ft* problem with previous measurement.

Questions

