NGC6543 (Harrington & Borkowski /NASA) SNR Cassiopeia A (Hughes et al/Chandra/NASA)

NUCLEAR
ASTROPHYSICS

W. Raphael Hix

ORNL Physics Division and
UTK Department of Physics
& Astronomy

VLT (ESO)



http://www.nasa.gov/
http://www.nasa.gov/

WHY STUDY ASTROPHYSICS?

Explore the beauty
of the night sky

Understand our
place in the Cosmos

Investigate physics
inaccessible to
terrestrial experiment

Explain our origins, how
we came to be from stardust.



OF WHAT ARE WE MADE?
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OF WHAT ARE WE MADE?

Solar s- and r- Process Abundances
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Understanding Origins means understanding
that transmute nuclei and the sites where

these processes occur.




ASTROPHYSICAL OBSERVATIONS...
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WHAT DO OBSERVATIONS TELL US?

1) Surface properties of stars
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Directly, we measure luminosity and

Indirectly, we measure temperature, radius, elemental
composition, and their variations.




WHAT DO OBSERVATIONS TELL US?

2) Clues to the interiors of stars

Convective
Z.one

Interface Laver
& ~

Radiative Zone

Core

r
Solar Interior

Solar Neutrinos

helioseismology - vibrations of solar surface probe interior
- emitted in the core & (almost) free stream out
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WHAT DO OBSERVATIONS TELL US?

3) Stages of stars lives

Birth from clouds of gas and dust, normal burning,
death in explosions or by fading out...



WHAT DO OBSERVATIONS TELL US?

4) Lifecycle of stars

The census of these many s
stellar lifecycle.
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WHAT DO OBSERVATIONS TELL US?

Relative Decl. (mas)

5) New surprises and
unexpected connections

v = . e
[ GRB 030329 ot 22 GHz 2003-04-22' 1

: . ! ..
NRAO/AUI/NSF -

| Q >
i
— z 1 i L i 1 1 l-n 2 | 2 2

1 0 -1
Relative R.A. (mas)
-

[ — ;38 Mon 2002 i, @N@ o fane

Hypernovae, GRB - supernova - collapsar
connection, dwarf-classical nova connection

t-.‘v -~‘._~
g et s




CONVERSION OF H TO HE

Two sequences of
nuclear reactions were
proposed for stellar

»
energy generation. outor
. Positron
*  Neutrino
The CNO CYCle, . vw»  y-ray photon
proposed by Weizacker

(1938) and Bethe (1939),
involves catalytic

reactions on pre-existing
C, N and O atoms.

The PP Chain, proposed
by Bethe (1939),
involves direct

reactions, starting with
H+H — °H.




PP CHAINS
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‘He+*He—*He+2p' ‘Litp —>4Hc+4Hc ‘B>*Be*+et+v

‘ SBe*—>4He+*He

There are 3 branches,
PPIII dominates T > 30 MK Wikipedia

PPI for T < 15 MK.




CNO cycle burning occurs through multiple interconnected
cycles. All are catalytic cycles: reaction sequence starts from a
pre-existing “seed” nucleus, consumes 4 protons (“fuel”),
creates helium (“ash”) & regenerates seed.

As temperatures increase, additional reaction cycles can
contribute.

For
temperatures e (p.) @ (P.) @ (.y) Q
found in

stellar cores, e+v) (p Y) e+v) e+V)
proton

£, © 0.0 o
reaction Cycle Cycle Cycle

) I 11 111
timescales are (p Y) 8 (e+v)( ) (p v)( ) (p Y)

much longer
decays. .0) [X) .0) 1)
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Both the CNO cycle and the PP chain are operative in
the Sun, so how do we know the PP chain dominates?

Each reaction sequence has a different sensitivity to
temperature and density, thus their energy production,
¢, also varies.

&(p, T)pp < pT*
e(p, T)cno o< pT?Y e
CNO Cycle
£(p, T)3q < p2T50
For the Sun, PP
chain dominates but
for more massive PP Chain
stars, with )

CNO dominates.
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SOLAR NEUTRINOS

Bahcall—-Serenelli 2005

Neutrino Spectrum (+10)

Neutrino Flux.

Neutrino Energy in MeV

Both PP and CNO neutrinos contribute to Solar




STELLAR NUCLEAR PHYSICS

Bahcall et al 2005

Nuclear Reactions

enerate ener
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Rate of energy generation
and compositional
change depends on

of their interactions

number density of nuclear species

Determination of absolutely necessary to
understand how nuclear physics influences energy
generation & element production in stars.



Eventually the sun will exhaust it’s H fuel (leaving He).

NUCLEAR FUEL (H) COLLAPSE

EXHAUSTED
0 (EXPLOSION)

. _wELTING
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PROTO-STARS MAIN SEQUENCE RED GIANTS tSUPER GIANTS} SUPERNOVAE
STARS

—— CENTRAL TEMPERATURE ———= Rolfs & Rodney

Without nuclear energy to balance, gravitational contraction
resumes.

Core temperature rises as it contracts until He becomes a
“fuel” for new thermonuclear burning.



EDGE EFFECTS

Contraction of the core raises the temperature and density of
the H-rich matters lying above it, leading to the ignition of a H
burning “Shell” around the core.

Rate of burning ¥ .
in the shell is y/ | yarogen- S
governed by the [ X KT
gravitational

gradient of the
core, not the
shell’s own

Nonburning

R G o~ : t helium “ash”
.Red™Gilan]
10 Rg
ar

hydrostatic
evolution,
resulting in a St

tremendous increase in luminosity.

This causes the . The expanded envelope
grows cooler, turning the star red.



Once the hydrogen is exhausted in the heart of a star, the next
central burning stage is helium burning via the triple alpha
reaction.

Overcoming the larger Coulomb potential requires much
higher temperatures.

Furthermore, 8Be is 0
. A 4y
unstable, with a e (-,:r,: s °
o o .
lifetime of 2.6 x 10-16 0
#® Proton “He
seconds, SO only > o
rarely does a third - _y-ray photon

4He nucleus collide
with the 8Be to form
12C before the 8Be

nucleus decays back
to 2 “He.

As a result the rate of 3a o« p2T30
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. Evolutionary Tracks off the Main Sequence
When H is exhausted bl &
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When H is exhausted
in core, hydrogen
burning ignites in
shell around the core.

Once hot enough, He
burning begins in the
core, until He is
exhausted.

Another round of
contraction leads to H
and He burning shells
around a C+O core
producing a Asymotic
Giant Branch (AGB)
Star for solar-like stars
or a Supergiant for
massive stars.
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RUSSELL-VOGT THEOREM

The ﬁnal fate Of a low mass stars . massive.stars
single star depends on  |EEEEERACEERENRESEINY
many facets, the most solar metalicity |

important is its mass
at birth.
(faint SN)

Mass loss is also S o
important. Very : ' il e
Massive stars can lose
much of their envelope, [

leaving the He or C/O
core visible.

/ the R
abundance of non-H
and He is also | P o PRI
important.
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The slow neutron
capture (s-) process
creates ~ half of all
nuclei more
massive than Fe.

beta decay

Occurs during
pulsations in red —@ neutron capture
glant stars via
chains of (n,y)
reactions linked by
B decays.

Neutrons are produced
by 13C(a,n)'*O and
22Ne(a,n)**Mg.
Production of 3C
requires 'H to be mixed
into C-rich region.
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The slow neutron Solar s- and r- Process Abundances
capture (s-) process
creates ~ half of all
nuclei more
massive than Fe.

Occurs during
pulsations in red
glant stars via

chains of (n,y)
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ﬁ decays_ Atomic Mass

Neutrons are produced Neutron capture rate is slower

by 13C(a,n)'*O and than beta decays, so s-process
22Ne(a,n)**Mg. path follows the value of stability:.
Production of 13C Slowest rates at closed shells
requires 'H to be mixed  accumulate flow, producing s-
into C-rich region. process peaks.
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THERMAL PULSATIONS M=5 2=0.02
IN AGB
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THE FATE OF STARS LIKE OURS

Sun’s Post-Main Sequence Evolutionary Track

Effective Temperature, K
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THE FATE OF STARS LIKE OURS

New whlte dwarf

Ehvelope of 'st.ar
. ejected into space

'\Little Ghost Nebula with HST (B: Olll, G: HII, R: NII) :
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INSIDE A MASSIVE STAR
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MASSIVE STELLAR BURNING STAGES

Process Fuel Ash Temperature | Duration
H Burning H He 30 MK 101 s
He Burning | He C 200 MK 108 s
C Burning @ O, Ne, Mg 800 MK 109 s
Ne Burning | Ne O, Mg 1.5 GK 107 s
O Burning O Mg-5i-5S 2 GK 107 s
Si Burning Si Fe-Co-Ni 3 GK 10° s

Collapse up to Th >3 GK 0.3 s

Nuclear reactions drive the evolution of stars with the
ash of each stage forming the fuel for the next stage.
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Average binding energy per nucleon (MeV)
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WHY STOP AT IRON?

Number of nucleons in nucleus, A
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Statistical Equilibrium (NSE). 4
This favors Fe, the most tightly z
e bound nucleus. ’
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CORE-COLLAPSE SUPERNOVA

Asthe massive star
nearsitsend, ittakes

o snnage s A Core-Collapse
Supernova is the
rnisssnatnaerncieriusansomecrs — 1N1€Vitable death

becomesunable to generate heat. The gas pressure
b Andorliguietilattialmeiis knell of a

massive star
(~10+ M o).

Once central
1ron core grows
too massive to

Within a second,
the core collapses

to form a neutron star.
Material rebounds off the
ostron st stigop be supported
s wave
by electron
JTS——— degeneracy
rockwemomar ey PTESSUTE,
collapse ensues,
— accelerated by
s electron
Hilebranat, ~ Capture.

Janka, Muller/
Sci. Am.
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SUPERNOVA SIMULATION

Chlmero model B12-WHO7/ SO

Entropy (k_b/nucleon)

2 6 10 14 18 22 ﬁ

Radial velocﬁy (km/s)
10000 20000

Bruenn, Mezzacappa, Hix, ... (2013)



ot ¥4 s B . : ‘ ' L .
g - Ty ! = _t o > kL
. N . R 0. 0 aaty’ e X",
E‘" N T : ™ .'-b g
- » . » / . "2 5 s
C . X 3 &
ot el 3., ..h.:v :
. 4 c

P

e S ! 4 e L
wFNNTSL ._-_x'd'ﬂ' Aoy SRS 4 L DS
W. R. Hix, Exotic Beam Summer School, Oak Ridge July 2014




*

.,_s.’.:’ L

b s owsmames o

P
.
.
-
v
v

D

W. R. Hix, Exotic Beam Summer School, Oak Ridge July 2014




SUPERNOVA
TAXONOMY

Observationally, there
are 2 types (7 subtypes)
based on their spectra
and light curves.

Physically, there are 2 3
4 mechanisms,

core collapse
(massive star),

collapsar or magnetar
(very massive star),

pair instability (very,
very massive star)

maximum 3 weeks one year
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6 FROM 1, 1 FROM ANOTHER

The core collapse
mechanism results in
supernovae with
quite varied spectra
and light curves.

Differences due to
variations in the
stellar envelope
which surrounds the

W
&
=
=
z
O
g
2
L
2
E
0

In contrast, the Type
[a SN are remarkable SN 1987
similar, suggesting a

mechanism with little

- 0 50 100 150 200 250 300 350 400
variation.

DAYS AFTER MAXIMUM LIGHT
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320 YEAR OLD SUPERNOVA

Cass10pe1aA _‘T--:'- “ . Supernova
o Yt R~ deposits
104 ] (1028
Mega-Tons
of TNT) of
Kinetic
Energy
into the
ISM,,
providing
a major
" “. sour(]:e of

. . heat to

- interstellar

gas.

Radio (VLA) Infrared (1SO)
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EJECTA RICH IN

HEAVY ELEMENTS

I l ] l
-Silicon
104 3 -
L =
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0O ’ /s % »
A S W :. Argon
1000 -  © Fe-L W -
= - I t Caleium .
- " L
2 |, g
O :
©
L [ron
100 h ~
| Chandra X-ray Observatory -
- Cassiopeia A |n ]
10 -
F . I .ﬂ:

Hughes, Rakowski, Burrows & Slane
2000

|
Energy (keV)

Supernovae from Massive Stars produce most of the
elements from Oxygen through Silicon and Calcium

and half of the Iron/Cobalt/Nickel.

They may also be responsible for the r-process.
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/ Intermediate mass
Infall Shock . / elements

Shock ejection
VaProcess, / fron-Peak elements

/

Bruenn
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TUNING THE EXPLOSION
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In current nucleosynthesis models, 2 parameters, the
Bomb /Piston energy and the , are constrained
by observations of explosion energy and mass of *°Ni
ejected.
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NEUTRINOS & NUCLEOSYNTHESIS

Despite the perceived importance of neutrinos to the
core collapse mechanism, models of the

nucleosynthesis have largely ignored this important
effect.

Nucleosynthesis from neutrino-powered supernova
models shows several notable improvements.

1.Over production of ‘ Wi
neutron-rich iron and nickel * Frohlich et al

* Thielemann et al
reduced. it

.....................................

60 70
Mass Number A
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NEUTRINOS & NUCLEOSYNTHESIS

Despite the perceived importance of neutrinos to the
core collapse mechanism, models of the

nucleosynthesis have largely ignored this important
effect.

Nucleosynthesis from neutrino-powered supernova
models shows several notable improvements.

1.Over production of o -
neutron-rich iron and nickel - Frohlich, ... Hix, ...
reduced.

2.Elemental abundances of
Sc, Cu & Zn closer to those
observed in metal-poor
v Cayrel et al.
StarS. 2 A Gratton & Sneden

Thielemann et al
® Frohlich er al.

Ca S Ti V Cr Mn Fe Co Ni Cu Zn
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NEUTRINOS & NUCLEOSYNTHESIS

Despite the perceived importance of neutrinos to the
core collapse mechanism, models of the
nucleosynthesis have largely ignored this important
effect.

Nucleosynthesis from neutrino-powered supernova
models shows several notable improvements.

1.Over production of | o Withot v
neutron-rich iron and nickel L kil

reduced. ot

.....................................

2.Elemental abundances of
Sc, Cu & Zn closer to those
observed in metal-poor
stars.

3.Potential source of light p-
process nuclei (76Se, 89K,

60 70 |
84ST,92’94MO,96’98RU). Mass Number A
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SITE OF THE
R-PROCESS

H.T. Janka

Formation of r-process
requires neutron-rich, high
entropy matter. May occur in

1) PNS wind in an SN,

2) in a wind from a
collapsar disk, or

3) in a neutron star merger. R. Surmar
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D. Price & S. Rosswog

accretion disk
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SIMULATING THE R-PROCESS

Uncertainties about the site of the r-process
provide considerable latitude for modeling.

R process :
| O ]
Timestep = 297 . S
l 0
Time (sec) = 1.983E+00 o
Density (g/cmA3) = 1.858E+04 X
Temperature (T9) = 1.742E+400
Max : 7.40E-01
()
O
c
ﬂbh (U
4;' - -g
™ >
E T .<Q
i Min : 1.00E-25

& nucastrodata.org

Beun, McLaughlin, Surman & Hix 2006
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R-PROCESS ELEMENTS IN OLD STARS
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URANIUM? =~~~
23 C831082 001 has 1/800 Solar Fe but

e(U)=-1.6,-1.7,-1.8, none

Cayrel, et al. J
2001, Nature, 409,
qoOI ]

1 ] 1 1 1 1 | 1 1 |
3,859.5 3,860.0 3,860.5
Wavelength (A)

Decay of 238U ('cl/z =4.5 Gyr) 1mp11es 12.543 Gyr
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SUMMARY

What role do star, supernovae, novae & X-ray bursts
play in cosmic nuclear evolution?

* Core Collapse
Supernovae produce the
intermediate mass

Solar Abundances

©
elements, O - Si- Ca, and [
~V5 of 8
)
* Thermonuclear |
Q
supernovae produce ~%2 H
of the 3 -

Os/Ir/Pt

3 Stars pr()duce , & ) 60 80 100 120 140 160 180 200

Atomic Mass

* Novae are likely responsible for odd mass
isotopes of light elements like C, I\,

Nuclear physics drives all of these events and their
resulting nucleosynthesis.
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