

Standard Model and ion traps: symmetries galore

Jason Clark Exotic Beam Summer School July 28 – August 1, 2014

Overview of lectures

- Overview of the Standard Model (SM)
- Nature of the weak interaction and β decay
- Tests of the SM description of the weak interaction
 - β -v correlations
 - unitarity of CKM matrix
 - constancy of *Ft* values
 - searches for neutrinoless double β decay
- Methods used to test SM description of weak interaction
 - Paul trap
 - Penning trap

Lecture 1 outline

- Overview of the Standard Model (SM)
- Nature of the weak interaction and β decay
- Tests of the SM description of the weak interaction
 - β -v correlations
 - unitarity of CKM matrix
 - constancy of *Ft* values
 - searches for neutrinoless double β decay
- Methods used to test SM description of weak interaction
 - Paul trap
 - Penning trap

Standard Model

Extremely successful at describing the world around us in terms of basic constituents and their interactions.

Still some open questions:

- what is dark energy?
- how did the matter/antimatter asymmetry come to be?

Is there something beyond the Standard Model?

Beyond the Standard Model

High energy

Low energy nuclear and atomic physics

Direct searches for new phenomena and particles at colliders

Indirect searches with high precision for subtle deviations from SM predictions

Electroweak theory predicts a symmetry between EM and weak interaction

Nuclear β decay correlations

The form of the interaction results in certain correlations between the emitted β and v and the spins...

$$dW = dW_o \varepsilon \left[1 + \frac{\vec{p}_e \cdot \vec{p}_v}{E_e E_v} \mathbf{a} + \frac{\Gamma m_e}{E_e} \mathbf{b} \right] + \dots$$

$$dW_0 = F(Z, E_e)p_e E_e(E_0 - E_e)^2 dE_e d\Omega_e d\Omega_e$$

Compare experimental values to SM predictions

Put limits on terms "forbidden" by SM

Tests of the Standard Model: accurate physics in an inaccurate system

$$dW = dW_o \varepsilon \left[1 + \frac{\vec{p}_e \cdot \vec{p}_v}{E_e E_v} \mathbf{a} + \frac{\Gamma m_e}{E_e} \mathbf{b} \right]$$

The nucleus is a complex quantum system not generally amenable to an exact description. However, by a proper choice of nuclear system, specific physical processes can be isolated and determined to high precision.

For measurements of angular correlations in nuclear beta-decay, only certain types of decays can be interpreted: For pure Fermi:SM prediction(only V A terms):

$$a = \frac{|C_V|^2 - |C_S|^2}{|C_V|^2 + |C_S|^2}$$

=+1

- Fermi allowed decay
- Gamow-Teller allowed decay
- mirror allowed decay

For pure Gamov-Teller:

$$a = -\frac{1}{3} \frac{|C_A|^2 - |C_T|^2}{|C_A|^2 + |C_T|^2} = -1/3$$

The Beta-Neutrino Angular Correlation

Neutrino too difficult to detect – correlation must be inferred from nuclear recoil

- Direct detection -- acceleration of daughters
- Energy shift in subsequent particle emission
- Sensitive to detector thresholds and resolution
- Correlation easily perturbed by scattering

Weak Interactions in Nuclei

Historically the V-A structure of the weak interaction was determined by measurements of the beta-neutrino correlation in noble gas nuclei in the 1960's

Today, precise measurements of the betaneutrino correlation are conducted to search for scalar or tensor contributions from exotic weak bosons

Experimental approaches

C.H. Johnson et al. Phys. Rev. 132, 1149

E.G. Adelberger et al. PRL.83, 1299 (1999).

Traps provide access to nuclear recoil

Traps provide a "massless" sample of radioactive nuclei suspended in vacuum

- Negligible scattering in source volume → nuclear recoil available for study
- Collect sample in ~1-mm³ volume → excellent geometry for radiation detection

■ Make efficient use of rare nuclei → high statistics needed for precision measurements

β -v correlation measurements using nuclei

Parent	Technique	Group, Lab	Results & Status			Ferr	ni (*))	(*) p	oure	ord	lomi	nan	t
³⁵ Ar	Penning trap	Leuven+/ISOLDE	on going			Mix	ed							
³⁵ Ar	Paul trap	LPC+/GANIL	on going		Gamow-Teller (*)									
^{38m} K	Laser trap	SFU+/TRIUMF	Gorelov <i>et al.</i> PRL 94 (2005) 142501; Upgrade in progress											
²¹ Na	Laser trap	Berkeley	Scielzo <i>et al.</i> PRL 93 (2004) 102501 ; Vetter <i>et al.</i> PRC 77 (2008) 035502	1.2								• P • P	ure GT ure Fe	Г ermi
⁶ He	Paul trap	LPC+/GANIL	Flechard <i>et al.</i> JPG 38 (2011) 055101; Upgrade in progress	1.1		I						• M	lixed	
⁸ Li	Paul trap	ANL+/Northwestern/LLNL	Li et al. PRL 110 (2013) 092502; Upgrade in progress	lexp∕α s.m. 0	Ŧ	-	Ī		I	I		Ŧ	ł	ł
⁶ He	Laser trap	ANL+/CENPA	on going	J				1		I			1	
⁶ He	Electrostatic trap	WIS (SOREQ)	in preparation	0.9		T				T				
³² Ar	Penning trap	Texas A&M	In preparation		⁶ H 196	e ²³ Ne 3 1963	n 1978	¹⁸ Ne 1997	³² Ar 1999	n 2002	^{38m} K 2005	²¹ Na 2008	⁶ He 2011	⁸ Li 2012

Confining ions with electric fields ...

the Paul trap

W. Paul

How to confine an ion in 1D with electric fields

To confine in 1D, need a restoring force:

$$F_z = -k_z(z - z_o)$$

This force can be provided with an electric field: $F_z = qE_z$

Since:
$$\vec{E} = -\vec{\nabla}V$$

then the potential required is:

$$V = \frac{k_z}{2q} (z - z_o)^2$$

or in a more general form: $V = \lambda_Z z^2$

How to confine an ion in 2D with electric fields

Taking the general form of 1D confinement and extending it to 2D:

 $V = \lambda_x x^2 + \lambda_y y^2$

In a source free region:

$$\vec{\nabla} \cdot \vec{E} = 0$$
$$\therefore \nabla^2 V = 0$$

Result is that:

$$\lambda_x + \lambda_y = 0$$

$$\therefore \lambda_x = -\lambda_y \equiv \lambda$$

$$\Rightarrow V = \lambda (x^2 - y^2)$$

(Trivial solution of $\lambda_x = \lambda_y = 0$ does not provide a restoring force.)

Equipotential surfaces required for 2D confinement

If we define: $V = \frac{\varphi_o}{2}$ at $(x,y) = (r_o,0)$

then:

$$\lambda = \frac{\varphi_o}{2r_o^2}$$

Result is equipotential surfaces:

$$\frac{x^2}{r_o^2} - \frac{y^2}{r_o^2} = -1 \quad \text{with} \quad V = -\frac{\varphi_o}{2}$$

Potential describes rods of hyperbolic cross section.

Equipotential surfaces required for 2D confinement

If we define: $V = \frac{\varphi_o}{2}$ at $(x,y) = (r_o,0)$

then:

$$\lambda = \frac{\varphi_o}{2r_o^2}$$

Result is equipotential surfaces:

$$\frac{x^2}{r_o^2} - \frac{y^2}{r_o^2} = 1 \qquad \text{with} \qquad V = \frac{\varphi_o}{2}$$

$$\frac{x^2}{r_o^2} - \frac{y^2}{r_o^2} = -1 \quad \text{with} \quad V = -\frac{\varphi_o}{2}$$

Potential describes rods of hyperbolic cross section.

For practical reasons, circular rods are often used:

- easier to machine
- not much difference in confinement

Equipotential surface

Potential provides confinement along one direction, but ions can escape along the other direction. Therefore need oscillating potential described by:

Trap in this manner called RFQ ion trap or Paul trap.

How to confine ions in 3D ... the simple approach (linear RFQ trap)

Add a harmonic potential along the 'non-filter' axis:

The RF applied to the rod structure confines the ions along the 'x' and 'y' (radial) directions; the harmonic potential confines the ions along the 'z' direction.

How to trap, cool, and accumulate ions

Often a buffer gas, like He, is used in the RFQ trap to cool the ions through collisional cooling. The equations of motion, then, include a 'drag force' and the solutions become complex versions of the regular Mathieu equations. This situation is analogous to the complex solutions which describe damped simple harmonic motion.

Bunched beam enters trap region

Trap closes

Ions cooled in 10-1000 ms to <1 eV using helium buffer gas

Hold cold ions for measurement

Trap opens for next bunch while retaining trapped ions

Repeat to accumulate ions

RFQ trap composed of square plates allows open geometry

Surround trapped radioactive ions with radiation detectors to reconstruct decay kinematics to determine energy/momenta of neutrinos or neutrons, particles that are normally hard to detect:

Advantages of RFQ traps for decay studies

Why is ⁸Li a promising candidate for improvement?

⁸Li decay has many advantages:

⁸Li
$$\rightarrow$$
 ⁸Be^{*} + β^- + ν
 $\rightarrow \alpha + \alpha$

Q ≈ 13 MeV (broad ⁸Be* state at 3 MeV) t_{1/2} = 0.808 sec

- ≻ Large Q value and small nuclear mass
 → 12-keV nuclear recoils and large shifts
 in a break up
- energy difference ±400 keV
- angle deviation from 180° by up to 7°

> Additional correlation between α and leptons enhances A/T difference

 $\beta - \nu$: ±1/3 $\beta - \nu - \alpha$: ±1

Symmetry of decay and detector array provides reduction of systematic effects

Surround trapped ions with DSSDs and plastic scintillators

1st results: $\beta - \alpha - \alpha$ coincidences from ⁸Li held in an RFQ ion trap

Axial vector vs. tensor difference enhanced by β-v-α correlation

Symmetry of apparatus and of decay suppresses systematic effects

<1% statistical and systematic uncertainties in test of Standard Model G. Li *et al.*, PRL **110**, 092502 (2013) N.D. Scielzo *et al.*, NIM A **681**, 94 (2012)

"Pure" Gamow-Teller decay

 $a_{SM} = -1/3$

 $a = -0.3307 \pm 0.0090 \rightarrow$ data for further reduction by ×3 under analysis

Questions?

