NUCLEAR STRUCTURE (PART II--lectures): viewed from afar (from stability)

The foundational models of the nucleus were developed based on structure studies of stable and near-stable nuclei

Far-from-stability studies of nuclear structure can test these models in regions of proton/neutron number far away from their point of origin

Reference: "Shape coexistence in atomic nuclei", Kris Heyde and John L. Wood, Rev. Mod. Phys. 83 1467 (2011) LECTURE 3: Simple (?) structures in nuclei --seniority; quadrupole collectivity

• Illustration of the two types of nuclear structure on which there is consensus (?)

seniority (pair-dominated) structures
quadrupole (shape-dominated) structures

• Illustration of isomer and Coulex spectroscopy

Excited O⁺ states at closed shells: mixing and repulsion of pair configurations in ⁹⁰Zr

N=50: g _{9/2} seniority structure	(p _{1/2} g _{9/2}) ²	$(p_{1/2})_0^2(g_{9/2})^2$	$(p_{1/2})_0^2 (g_{9/2})^4$	$(p_{1/2})^2_0(g_{9/2})^6$
	8 ⁺ 3589 6 ⁺ 3448	8 ⁺ 2760 6 ⁺ 2612	8+ 2644 6+ 2498	8 ⁺ 2531 6 ⁺ 2424
$E(2_1^+)$: in some cases it appears high, implying a closed (sub)shell, but is due to a <i>depression</i> of	4+ 3077	4+ 2283	4+ 2187	<u>4+ 2099</u>
the ground-state energy	<u>2+ 2186</u>	2+ 1509	<u>2+ 1431</u>	<u>2+ 1415</u>
<u>0+ 1761</u>	0+ 1761			
$\frac{0^{+}}{0^{+}} \frac{p_{1/2}^{2}}{g_{9/2}^{2}}$		<u>0⁺ 0</u>	<u>0+ 0</u>	<u>0+ 0</u>
<u>0⁺ 0</u>	<u>0⁺ 0</u> 90Zr ₅₀	⁹² Mo ₅₀	⁹⁴ Ru₅₀	⁹⁶ Pd₅₀

Neutron-rich Ni isotopes probably dominated by a $vg_{9/2}$ seniority structure

Figure from Heyde & Wood

The relatively high $E(2_1^+)$ value in ⁶⁸Ni is probably not indicative of a doubly closed shell

⁶⁸Ni has a structure which is similar to ⁹⁰Zr, i.e., a seniority structure that is dominated by $g_{9/2}$ and $p_{1/2}$; but the additional states indicate that $f_{5/2}$ and $p_{3/2}$ (and, possibly, proton pair excitations^{*} across the Z = 28 shell) are active.

*See D. Pauwels et al., PR C82, 027304 (2010)

The g_{9/2} seniority structure persistence near the doubly closed shell ⁷⁸Ni, ¹⁰⁰Sn, and ¹³²Sn nuclei

	$vg_{9/2}^{-2}$	$\pi g_{9/2}^{-2}$	$\pi g_{9/2}^{-2}$	Figure taken from A. Jungclaus et al., PRL 99 132501 (2007)
E _x (MeV	$(8^{+}) - 2420 - 2276 - (6^{+}) - 2276 - 2276 - (4^{+}) - 1922 $	$(8^{+}) - 2428 - (6^{+}) - 2281 - (4^{+}) - 2083 - (2^{+}) - 1395$	$(8^+) - 2130 - (6^+) - 1992/2002 - (4^+) - 1864 - (2^+) - 1325$	The 8 ⁺ states are isomeric: $T_{1/2}$ (ns) Ey (keV) B(E2) W.u. ⁷⁶ Ni 590 144 0.71 ⁹⁸ Cd 480 147 0.46 ¹³⁰ Cd 220 128/138 [*] 1.7/1.3 [*]
1	(2+)			[*] In ¹³⁰ Cd the ordering of the 128/138 keV γ-ray cascade is not certain
0	0+ 76Ni ₄₈	0 ⁺ <u> 98</u> Cd ₅₀	0 ⁺ 130 48 Cd ₈₂	The constancy of the B(E2) values , independent of whether the structures are dominated by protons or neutrons and independent of mass, is remarkable and shows the simple nature of seniority structures.

Neutron-rich Sn isotope structure dominated by $vh_{11/2}$ seniority structure

¹⁵²Sm: what is the nature of the 0_2^+ (685 keV) state?

								<u>9+ 3018</u>
	8 <u>- 2888</u>	1 <u>1- 2905</u>		<u>13- 2833</u>	14+ 2736		<u>11+ 2832</u>	
		9 <u>- 2507</u>	<u>11- 2640</u> 1 <u>0- 2510</u>		14 2730	<u>12† 2526</u>	<u>10+ 2662</u>	7 <u>+ 2623</u> <u>9+ 2587</u>
			<u>9- 2290</u>	<u>11- 2327</u>			<u>9+ 2376</u>	6 ⁺ 2417 8 ⁺ 2392 4 ⁺ 2402
	1 <u>- 2173</u>	7 <u>- 2177</u>	8- 2201		<u>12+ 2149</u>	10+ 2058	<u>8+ 2140</u>	5^{+} 2237 7+ 2205
		5 <u>- 1976</u>	7 <u>- 2004</u> 6 <u>- 1930</u>	<u>9- 1879</u>		<u>10 2000</u> <u>6+ 2004</u>	7 <u>+ 1946</u> <u>2+ 1944</u>	$\frac{4}{3^{+}} \frac{2032}{1907} \frac{6^{+}}{5^{+}} \frac{2040}{1891}$
		3 <u>- 1779</u> 1 <u>- 1681</u>	5 <u>⁻ 1764</u> 4 <u>⁻ 1683</u>		40+ 4000	<u>8+ 1666</u> 4+ 1613	<u>6⁺ 1728</u> <u>0⁺ 1755</u>	<u>2* 1769 4* 1757</u>
			<u>3- 1579</u>	7 <u>1506</u>	<u>10* 1609</u>	<u>4 1613</u>	<u>5+ 1559</u>	
			2- 1530 1- 1511	<u>5− 1222</u>		<u>6+ 1311</u> <u>2+ 1293</u>	<u>4+ 1371</u> <u>3+ 1234</u>	
ſ	152 c	m		<u>3- 1041</u> 1- 963	8 <u>† 1125</u>	4 <u>+ 1023</u> 0 <u>+ 1083</u>	<u>2* 1086</u>	
				6 * 707		2 <u>+ 811</u> 0 <u>+ 685</u>	We all thought that the 0_2^+ (685 keV)	
					<u>4⁺ 366</u>	33 W.u.	of a β vibration	on
					<u>2+ 122</u> 0+ 0			

Shape coexistence in the N = 90 isotones: explains the E0 transition strengths

Electric monopole transitions are a *model-independent* signature of shape coexistence and mixing--J.Kantele et al., Z. Phys. A289 157 (1979).

Multi-Coulex of 152 Sm 0₂⁺(685 keV): strongest response is to head of K=2⁺ band at 1769 keV

Shape coexistence in the N = 90 isotones: coexisting K = 2 bands revealed by E0 transitions

3⁺, K = 2 \rightarrow 3⁺, K = 2: 631 keV transition in ¹⁵⁸Er has no observable γ -ray strength, only ce's [3K² - I(I+1) = 0] are observed --accidental cancellation of E2; M1 is very weak.

Kulp, Wood, Garrett, Zganjar and others

¹⁵²Sm and the neighboring N = 90 isotones are a manifestation of shape coexistence

Proton particle-hole excitations across the Z = 64 gap may be the source of the coexisting shapes.

Less-deformed 2h and moredeformed 2p-4h structures coexist at low energy at N=90.

Strong mixing obscures the energy differences that are indicative of different shapes.

Strong *E0* transitions are a key signature of the mixing of coexisting structures.

As observed, the K=2 bands will also mix strongly, resulting in E0 transitions.

Ground state properties, S_{2n} and $\delta < r^2 >$, in the regions of N = 60, 90 are very similar

Universal rotor B(E2)'s

Figure from Heyde & Wood

$$B(E2; 2 \to 0) = \frac{1}{16\pi} \left(\overline{Q}_0^{(e)}\right)^2,$$

$$B(E2; I \to I - 2) = \frac{15I(I - 1)}{2(2I - 1)(2I + 1)} B(E2; 2 \to 0)$$

$$E_I = E_0 + \frac{\hbar^2}{2\Im}I(I+1)$$

Multistep Coulomb excitation of ^{74,76}Kr using radioactive beams of Kr on a ²⁰⁸Pb target

E. Clement et al., Phys. Rev. C75 054313 (2007)

^{72,74}Kr: 0₂⁺ states observed by conversion electron spectroscopy via IT decay of ^{72m,74m}Kr

horizontal dashed lines show energies (Δ) of unmixed 0⁺ configurations

	72	74 76	78
o ² (EO)•10 ³	72 ⁶	85 ¹⁹ 79 ¹¹	47 ¹³

E. Bouchez et al., PRL 90, 082502 (2003)

J.L. Wood et al. NP A651 323 (1999)

Quadrupole shape invariants constructed from E2 matrix elements for ^{74,76}Kr

E. Clement et al., Phys. Rev. C75 054313 (2007)

$$\langle q^2 \rangle \equiv \langle 0_1^+ \| \hat{Q} \| 2_1^+ \rangle \langle 2_1^+ \| \hat{Q} \| 0_1^+ \rangle + \langle 0_1^+ \| \hat{Q} \| 2_2^+ \rangle \langle 2_2^+ \| \hat{Q} \| 0_1^+ \rangle$$

$$\text{for the ground state}$$

$$\langle q^3 \cos 3\delta \rangle \equiv \sum_{r,s=1,2} \langle 0_1^+ \| \hat{Q} \| 2_r^+ \rangle \langle 2_r^+ \| \hat{Q} \| 2_s^+ \rangle \langle 2_s^+ \| \hat{Q} \| 0_1^+ \rangle.$$

Nuclear shapes studied by Coulomb excitation D. Cline, Ann.Rev,Nucl.Part.Sci. 36, 683 (1986)

Go forth and explore!

