Magnetic Separators

Jacklyn M. Gates Lawrence Berkeley National Laboratory

Outline

- Why need magnetic separators
- Basic principles
- Electromagnets
- Some examples

Why need magnetic separators?

- Nuclear reactions are messy.
 - Beam 10⁹ 10¹³ particles per second
 - Scattered target material
 - Transfer reaction products
 - Quasi-fission products
 - Fission products
 - Fragmentation products
- Essentially A lot of the stuff coming out of the target is not the nuclide you want to study

Lorentz force:

• Charged particle moving in a B field experiences a sideways force that is perpendicular to the magnetic fields and the velocity of the particle.

Centripetal force:

 Force that keeps a body moving with a uniform speed along a circular path and is directed along the radius towards the center.

How Separation is Achieved

How Separation is Achieved

How Separation is Achieved

Magnets - Dipole

• Normal dipoles, no edge angles

Exotic Beam Summer School, August 1st 2013

Exotic Beam Summer School, August 1st 2013

Magnets – Dipoles with Edge Angles

• With focusing – Edge angles

Exotic Beam Summer School, August 1st 2013

Magnets – Dipoles with Edge Angles

View from the top

View from the side

Magnets – Quadrupole Doublets

Magnets – Quadrupole Doublets View from the top

View from the side

Exotic Beam Summer School, August 1st 2013

Magnets – Quadrupole Triplets

View from the side

Exotic Beam Summer School, August 1st 2013
CARIBU – Isobar Separator

• CARIBU – Californium Rare Isotope Breeder Upgrade

Exotic Beam Summer School, August 1st 2013

CARIBU – Isobar Separator

• CARIBU – Californium Rare Isotope Breeder Upgrade

https://www.phy.anl.gov/atlas/caribu/Cf252_upgrade_proposal_final_Rev4.pdf

CARIBU – Isobar Separator

http://ns12.anl.gov/pdfs/presentations/Mondaytalks/2012_0813_1600_Savard.pdf

Exotic Beam Summer School, August 1st 2013

The National Superconducting Cyclotron Laboratory (NSCL)

- Fragment Separator
- Main scientific roles
 - prepare secondary beams of radioactive ions for transport to RIB factories
 - dripline nuclides

Exotic Beam Summer School, August 1st 2013

The National Superconducting Cyclotron Laboratory (NSCL)

- Three stages:
 - Bp Filter
 - Energy Degrading Wedge
 - Isotope Filter

Exotic Beam Summer School, August 1st 2013

What about with 'slow' (5 MeV/A) Beams?

- Recoils exit the target with a distribution of charge states
- Bp = mv/q

An Example Reaction: ⁴⁸Ca +²⁴³Am→²⁸⁸115 Beam Energy: ~5 MeV/A Recoil Energy: ~0.8 MeV/A

Maximum efficiency in vacuum separators limited to less than the fraction that exits in one charge state or ~30%

Parameterization from Phys. Lett. A, 28 (1968) 277

Why a Gas-Filled Magnetic Separator?

Why a Gas-Filled Magnetic Separator?

- Recoils exit the target with a distribution of charge states
- Bρ = mv/q

 Reason #1: Recoils passing through He take on a welldefined average charge state.

(100% charge acceptance)

 Reason #2: The average charge state is nearly proportional to velocity.

(large velocity/energy acceptance)

Parameterization from Phys. Lett. A, 28 (1968) 277

Old Average Charge Data from Betz and Whitkower

Exotic Beam Summer School, August 1st 2013

Gas

Ghiorso and Armbruster suggest that deviations are due to electronic shell structure of stripped ions

A. Ghiorso et al. / SASSY, a gas-filled magnetic separator

Exotic Beam Summer School, August 1st 2013

Understanding Magnetic Rigidity in He Gas Sinusoidal correction based on electronic structure of stripped ion . . .

Semi-empirical understanding of why this works:

If the stripped ion is in an forbital, the most loosely bound electrons are inner electrons, and are less available for stripping by the gas, giving a lower q.

If the stripped ion is in a porbital, the most loosely bound electrons are outer electrons, and are readily available for stripping by the gas, giving a higher q.

But problems arise at low velocities!

Berkeley Gas-filled Separator (BGS)

- Poor mass resolution
- High gamma background at focal plane

Berkeley Gas-filled Separator (BGS)

Berkeley Gas-filled Separator (BGS)

- Poor mass resolution
- High gamma background at focal plane

Electromagnetic Separators

Electromagnetic Separators - Wien

Balance electric and magnetic fields:

Electromagnetic Separators - Wien

But what if you made it longer?

Mass Analyzer: The Idea

Unbalance electric and magnetic fields:

$$r = \frac{mv_{\perp}}{qB}$$

Unbalancing the Fields

Unbalancing the Fields

A=98 A=99 A=100 A=101 A=102

Status and Future

Currently building test setup

Ion Source

Focusing Element

Magnet + Electrode

MCP Detector

Exotic Beam Summer School, August 1st 2013

Solenoids - Helios

- HELIcal Orbit Spectrometer at Argonne National Laboratory
- Drip-line nuclei produced in inverse kinematic reactions

J.C. Lighthall et al., Nucl. Instrum. Methods A 622 (2010) 97–106

• Particles emitted from the target follow helical trajectories in the magnetic field

• Particles emitted from the target follow helical trajectories in the magnetic field

• After a single orbit, they return to the solenoid axis where they can be detected

• After a single orbit, they return to the solenoid axis where they can be detected

HELIOS

S800

• National Superconducting Cyclotron Laboratory

Exotic Beam Summer School, August 1st 2013

MARS – Projectile Fragment Separator

• Used to produce and separate exotic nuclei via inverse kinematics for radioactive beams or nuclear decay studies

Exotic Beam Summer School, August 1st 2013

MARS – Projectile Fragment Separator

• Used to produce and separate exotic nuclei via inverse kinematics for radioactive beams or nuclear decay studies

FMA – Fragment Mass Analyzer

- High mass resolution
- Good background suppression
- Efficiency limited by angular acceptance

FMA – Fragment Mass Analyzer

Conclusion

- Magnetic separators are useful for a variety of purposes
- Separation is based on m/q or mv/q
- Nearly endless configurations
- Most rely on series of dipoles for separation and quadrupoles for focusing
- Magnetic separators will become more important with FRIB and the next generation radioactive beam facility

Thanks For Your Attention

BERKELEY, CALIFORNIA