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* Introduction.
* Resonances in atomic nuclei
* Role of resonances in era of exotic beams
* Relating observables to nuclear structure. R-matrix
* Resonance reactions with exotic beams. Experimental
approaches
* Elastic and inelastic scattering with exotic nuclei.
Nucleon Transfer reactions.
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Practically unlimited
yield of thermonuclear
explosion is possible
due to resonance in °He!

“He Hes
H + 2H -> “He + n + 17.8 MeV
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Hoyle state in 12C at 7.65
MeV is responsible for
production of 2C in red
giants and ultimately for
our existence
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Observation of a resonance in an elastic scattering

A Cross Section
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Excitation function for ?C+p elastic scattering
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Separation energy of the last nucleon (MeV)
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Learning about nuclear structure from resonances.
R-matrix theory.
12C
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R-matrix theory

u(r — oo) = Agsin(kr + dy)
k - wave number: p = kh = +/2uE
phase shift; d; = f(E, V)

Using Euler’s formula sin(x) = &5—

u(r — o) ~ e~ — g2isgikr — | _ YO

U = €29 collision (scattering) function

Collision matrix is related to the observable: the scattering
cross section.
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R-matrix theory
u(r = oo) ~ e~k _ g2k’ — | _ O
U = ¢
¥(r, 8, @) = A[e"* + (1/r) f(8,¢p)e™]
o(0, E) = |f(8, E)|?
Straightforward manipulations can be used to show that:
(6, E) = go (2¢ 4+ 1)(1 — Uyp)Py(cos(6))

Problem: How to relate the measured cross section to
the properties of the wave function in the interior region.
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R-matrix theory

On-resonance and off-resonance
behavior of the interior wave function

035,

u
0.3} H = (_%)
PU, ) r=a

025}

p = Kr
L u=1[1-UQ
0.1 . I-UQO
R = So—uoy
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R-matrix theory

Applying Green’s theorem to Schroedinger eq. leads to
2
— [ Ye — X 2 s he reduced width
= (pu2>r=a . Z,\: B-E M= V2" ampituae
E, - Eigenvalues and
ux(a) - eigenfunctions of Schroedinger eq. which satisfies

ux(a) \ ar

Interaction is unknown, so eigenvalues and values of eigenfunctions at a (channel
radius) for EACH resonance are parameters of the theory. Other parameters are -
channel radius “a” and boundary condition “B” (B is set independently for each

partial wave).

a (dUA) — B boundary condition.
r=a
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R-matrix theory

Internal part  External part In a nutshell:
| | 1. The problem is split into two
™ ¢ ' | regions, internal and external.
0.3} d
2. Internal region, where
e interaction is important and
ol unknown, is parametrized.
" of 3. External part is described by
asymptotic behavior of the wave
0.1} : .
functions under the assumption
0.2} that there is no interaction (except
| for Coulomb!).
0 10 20 30 40 50

r (fm) 4. The phase shifts (collision
functions) of the asymptotic wave
functions are related to the R-
function.
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R-matrix theory

External wave function, assuming spinless but charged
particles.

| = (G —iF)e™ Incoming wave function with Coulomb
O = (G + iF)e~™ Outgoing wave function with Coulomb

4 ;
=X, tan—" 2 Recall that R = _;={%y and U=eé*

and the expression for the phase shift can be found:
e = tan~" (tEipy ) — b+ we

Pr= '%5 penetrability factor b= tan~' ¢
Fj__, éG, | hard sphere phase shift
St = "z ka shift factor
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R-matrix theory

If cross section is dominated by an isolated resonance:
2

e 2
RS E,\—E 0p = tan™1 ( 1/ B ) — Qp + wy

Since o ~ |1 — 62"5|2 CS is maximum when 4, = 90°
and it is 1/2 of the maximum when é; = 45°

E, = Ey —v2(Si(E;) — B) Observed resonance energy
[ = 2Py(E;)Y? Formal resonance width

2Py (Er)y .
Pl wj% 48 Observed resonance width
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R-matrix theory

reduced width amplitude is the parameter that is directly
related to the structure of the specific resonance

So, what we should compare it to?

It is easy to show that the reduced width in the trivial case of a
square well potential with radius a is:

A u ~ sin(Kr)
Gy /N
o RV v K — V2u(E-V)
= R
’ /\/\/ For zero boundary condition B=0
R B e
’ ::i:;’/-_;_- o= Tow = L2

. T i
2279 —~
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R-matrix theory

Square well reduced width is often used as a convenient
measure of how “single particle” the level is.

s = 71% dimensionless reduced width.
Sw

There is no need to use 3/2 factor introduced by Wigner before the Shell Model
was discovered.

More quantitative measure of resonance’s “purity” is provided
by exact solution of Schroedinger equation with a more
realistic potential. Woods-Saxon form is commonly used.
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R-matrix theory

~AUr
a4
5 . More accurate dimensionless
¥ 9,\ — 7—23* reduced width is determined
WS using Woods-Saxon potential
Lo Y, reduced width amplitude
V(r) = —#

16

P If the wave function of the compound state is calculated (using Shell
/ Model, for ex.) then the reduced width can be related to the overlap

' ,‘ integral between the channel wave function and the wave function of
the compound state calculated at the surface of radius a.

v= ()" [ xvioneenas.
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R-matrix theory

R-matrix vs Exact solution of Schroedinger equation

B=-20
a=4.2fm
E, = 1.635 MeV

vy = 1.4 MeV1/2
Eobs = 1.603 MeV

robs — 64 kev
W-S potential parameters:
V =-54 .4 MeV
a =0.662 fm
o = 1.26 fm

so = 6.4 MeV
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R-matrix theory
Dependence on the channel radius and boundary condition

d B E A Eobs [ obs 9§W
fm MeV MeV'/2 MeV keV
4.2 2.0 1.635 14 1.603 64 0.76
4.2 0.0 -2.285 1.4 1.603 64 0.76
4.2 -1.0 -0.325 1.4 1.603 64 0.76
. 2.0 1.685 0.75 1.603 64 0.33
6.2 2.0 1.675 0.48 1.603 64 0.19

1.603 g W 4 1.603 64 1.0

Rizc+ Rp=2.61 + 0.84 =3.45 fm
Prescription that usually works well: a =1.4*A"3+ 0.84
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R-matrix theory
Multi-level, multi channel problem for charged particles with

non-zero spin. e !
R— Rase,alslel — Z ?:—_)‘é—
A

Y
Lovv e @)= [ =Co (s Puvr.am
k.

i :_‘- (U410 TM) (sTVm'| TM) U U
where XTove ot VPO, (2.3) _) ase’a/ S, E’

Tovv.and =5 pi at=Upvr, e’

In performing the absolute squaring operation, ome 2 2
introduces the two sets of summing integers Uaa ~J *
(T M "} and  (J:M4d'my'")

for the single set of (2.3), and thereby obtains for (2.1)

, ~ N2
|."s+1',b—. €9 ae o8l (254 1) | Cor(00) | Brvr.an aaa/

+ T (20N DN 00] S M)
X (0] ) (4 m 1M 4l | 1AM Available codes: SAMMY (Oak Ridge)

X (Turvit. i ¥ (02,1))

— X (et Fmd 90 (2,)" AZURE (Notre Dame)
RE B DN/ MinRmatrix (FSU)

Kbururv, annl Re[iT o sop, aut? Vor @ (R0 )C o (80) ).
(2.4)

A.M. Lane and R.G. Thomas, Rev. of Mod. Phys., 30 (1958) 257
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