

1

Gamma Ray Spectroscopy

Mario Cromaz, LBNL

- basics
- a bit of history, motivation
- gamma-ray tracking spectrometers
 - they're new! just operational in last 2 years
 - large-scale, general purpose devices
 - GRETINA (US), AGATA (Europe)
- practicalities
- summary

The Basic Experimental Idea

Interaction of Gamma-Rays

Photo effect

Ge Detectors

- high-purity Ge crystal operated as a reverse-biased diode
- **excellent** energy resolution due to small bandgap:
 - large number of charge carriers
 - low statistical fluctuations
 - high energy resolution
 (2 keV @ 1 MeV)
- but ...

ETIN

- expensive
- Z=32 (medium stopping power), medium volume
- requires cryogenics

valence band

Background

- several potential sources:
 - contaminant reactions
 - neutrons on Ge, Al, ...
 - decay products
 - room background
 - Compton background
- in Ge spectrometers the primary background is usually Compton background
- $P/T \sim 0.2$ for std. Ge detectors
- background is highly correlated

Gretina ⁶⁴Ge untracked - H. Crawford

Suppressors - Improving P/T

EBSS13

.....

BERKELEY

Ш

LAE

In practice

SR.

ETINP

Gammasphere

- 4π Compton-suppressed spectrometer:
 - 110 detectors (nominal)
 - ~10% efficiency @
 1MeV (prev. arrays ~ 1%)
- large number of detectors maintains efficiency while reducing summing
- high peak/total (60%) achieved by using Compton suppressors for each Ge detector
- solid angle coverage: 1/2 Ge, 1/2 BGO suppressor

improvements in rp

...using F-fold coincidences (here 'matrix': F=2)

- E_x - E_v coincidences go into peak (blue) \rightarrow
- \rightarrow "everything else" spread over red area, as it isn't coincident with any E_x

Optimal Fold

- resolving power weakest observable branch
- optimal fold # of gates which minimizes background but retains sufficient counts in peaks
- 8pi, HERA ($\epsilon \approx 1\%$) $f_{opt} = 2$
- Gammasphere ($\epsilon \approx 10\%$) f_{opt} = 3,4

$$RP = 1/\alpha^* = r^{f^*}$$

r = 0.76(\Delta E/E_{res})(P/T)

The Ge shell

- Want more efficiency!
- BGO suppressors are effectively dead material from a spectroscopic point of view
- Why not tile a sphere with solid Ge? Break through 10% singles efficiency
- problem summing

gamma-ray scatters in multiple detectors - cannot recover energy

- sol'n 1: many detectors (>1000)
- sol'n 2: many "effective" detectors

Segmented Coaxial Ge Detectors

- electrically segment outer contact of N-type Ge detector
- large HPGe crystal (9cm long, 8cm diameter)
- hit segment identified by presence of net charge
- each crystal is 36-way segmented, 6 longitudinal and 6 azimuthal segments
- for ~100 crystals → ~4000
 "effective" detectors

- these effective detectors are small (few cm³)
- simple clustering not sufficient to assign hit segments to individual gamma-rays recovered energies by summing not reliable
- need to additional components to make this work:
 - Compton tracking
 - sub-segment position resolution of individual interaction points

2 of 3 γ -ray energies incorrect

EBSS13

hut

net and induced signals allow sub-segment position determination of interaction points

(14.1, 10.5, 30.7) (3.1, 17.5, 30.8)

amplitude of induced signals $\sim 5\%$ of net charge signals

Compton Tracking

$$E_{\gamma} = E_{e1} + E_{e2} + E_{e3}$$

$$\cos \theta_{C} = 1 + \frac{0.511}{E_{\gamma}} - \frac{0.511}{E_{\gamma}'}$$

group interaction points likely to
 belong to a given gamma-ray
 fit all permutations of positions and
 energies of interaction points against the

Compton scattering formula 3. choose permutation with lowest χ2 to give most probable scattering sequence

$$\chi^{2} = \frac{1}{N-1} \sum_{i=1}^{N-1} \left(\frac{\theta^{i} - \theta_{C}^{i}}{\sigma_{\theta}^{i}} \frac{1}{j^{2}} \right)^{2}$$

4. apply a FOM cut (eff. vs P/T) - if χ^2_{min} > FOM regroup points - reject event if re-grouping fails (Compton escapes, not target-like)

- high efficiency
- gamma-ray is rejected if it fails to track (your entire active volume is your suppressor)
- event-by event Doppler correction, critical for fast beams *
 - for high-velocity residues, energy resolution dominated by detector opening angle
 - tracking gives first interaction point, angle with precision
- polarimetry
- counting rate

ge tracking shell rp

The Gretina Spectrometer

- partial shell covering 25% of available solid angle (scalable to full 4π coverage)
- consists of seven 4-crystal modules (quads)
- similar in scope to the AGATA demonstrator
- singles efficiency $\sim 6\%$
- peak/total ~55%
- 2mm position resolution
- data processing rate $\geq 20,000$ γ/s

- very highly segmented HPGe detectors required
- efficient algorithms to determine scattering locations in the crystal (signal decomposition)

 $-\sigma_x, \sigma_y, \sigma_z \leq 2 \text{ mm}$

- completely digital signal-processing chain
- computing required for real-time data processing
- four major subsystems:
 - detector
 - mechanical
 - electronics
 - computing, algorithms

Detector Module (quad)

- 4 encapsulated crystals in a single cryostat
- 2 types of irregular hexagons allow for spherical packing
- segments have warm FETs, central contacts have cold FETs
- 148 pre-amps/module

Mechanical Structure

- two "quarter" spheres
- exceptionally rigid
- can be rotated to remove detectors
- very high precision necessary to avoid interference
 - frame, wedge plates
 - detector cryostat

Digital Electronics

- tracking arrays require
 - energy (segments, cc)
 - time (physics, event building)
 - trace of charge on segments, cc
- need for trace for sub-segment position resolution, channel density requires digital electronics
- approx. 1000 channels
- employ VME-based digitizers constructed at LBNL:
 - 10 ch, 14-bit, 100 MHz
 - extract trace information and provide energy, LED, CFD,

Gretina employs 100 digitizer boards requiring 4 racks

Locating Interaction Points

- calculate electric field, weighting potentials based on crystal geometry, bias voltage, impurity concentration of each crystal
- generate a grid and simulate charge collection on each segment pad for unit charge at each grid point
- compare simulated signals against those experimentally measured
- position of interaction point has the lowest χ^2

spacing is sensitivity weighted

- multiple interactions within a segment
- image charge signals can overlap with that of neighbors
- must fit linear combinations of simulated basis signals **s** experimental signals

 $s = e_1 s_{r1} + e_2 s_{r2} + e_3 s_{r3} +$ $s_{rn} \equiv tr_{net} | tr_{n1} | tr_{n2} | tr_{n3} |$ tr is 50 samples (500ns)

- roughly 230,000 basis elements s_{rn} per crystal, number of interaction points unknown apriori
- ... and you need to run in real time
- this problem/process is known as signal decomposition

• adaptive grid search

-net = 1

- exhaustive search for 2 interaction points on course grid (600x600) followed by refinement on fine grid
- -net > 1
 - perform search on high energy segment, perform above search and subtract result from neighboring segments search resultant signal in neighbors
- non-linear fit (sqp)
 - use starting positions from adaptive grid
 - fit t₀, allow interaction points to go off grid
- computationally efficient, works well in simulation

- signal decomposition is the rate limiting step
- performance goal for Gretina is $20000 \text{ } \gamma/\text{s}$
 - post trigger
 - 20,000 mult. M=1 events
 - 4,000 mult. M=5 events
- implication:
 - -20,000 y/s 1.5 xtals/ y = 30,000 decomp/s
 - $\sim 10 \text{ ms/decomp/cpu core}$
 - $-\sim 300$ cpu cores

Gretina computing cluster

Readout

- readout is the second bottleneck
- 40 ch/xtal * 120 samples *
 2 bytes /sample ~ 10 kB
- 30,000 xtal/s * 10 kB = 300 MB/s (~10 MB/s/crate)
- average xtal readout rate
 1 kHz
- Gretina requires a selective trigger so not to be overwhelmed by the shear size of trace data

Measuring position resolution

- pencil beams:
 - primary tool for measuring position resolution
 - use collimated Cs source so that first interaction point of pencil defines a line through detector
 - gives 2D position resolution for a line through the crystal
- coincidence scans:
 - use second detector with collimator to tag on 90 deg scatters from pencil beam
 - -very selective, low count rate

- coincidence scans (single interaction) show two points rather than one
- culprit differential crosstalk
- derivative of neighboring signals induced on signals of interest
- similar magnitude as induced signals which define (ϕ, z) of interaction points
- basis (simulated) signals no longer accurate - fitter will use multiple interactions to try to mock thing up

single interaction point coincidence measurement

(14.1, 10.5, 30.7) (3.1, 17.5, 30.8)

Electronics Response Corrections

- need to determine:
 - integral crosstalk
 - -differential crosstalk
 - preamplifier shaping
 - delays between channels
- only a subset of all possible crosstalk parameters are required
- but still ... hundreds of parameters/xtal
- and many of these parameters, specifically differential crosstalk, you cannot directly measure ... :(

⁶⁰Co superpulse fits

- signals in each segment have same electronic crosstalk

- fit these parameters from averaged traces given proper weighting by simulation

- fits include integral and differential crosstalk, relative delays between channels and preamplifier shaping

Coincidence data - q1a1

Q1A1, pencil

vertical Cs

-decomposition, not simple lookup

Aug. 3, 2013

Q2A6 - transverse pencil

EBSS13

rrrr

BERKELEY

MICHIGAN STATE UNIVERSITY OAK RIDGE NATIONAL LABORATORY

- start construction June 2005
- start operation April 2011
- engineering and commissioning May 2011
- operation at NSCL July 2012
- operation at ANL Jan 2014

untracked

tracked

untracked

tracked

- γ-ray spectrometer technology continues to evolve
- capability to build a spectrometer based on a Ge shell has been developed

Summary

- very complex, large scale requires significant resources, collaboration
- still in the early days potential for higher performance (signal decomp, rate)
- Ge tracking arrays will extend the physics reach of both current and future exotic beam facilities

Thanks to the Gretina collaboration especially Augusto Macchiavelli, I-Yang Lee, David Radford and Heather Crawford