nuclear astrophysics – lecture 2

Alan Chen McMaster University, Canada

thermonuclear reaction: narrow resonances

[broad resonances: widths are energy-dependent \rightarrow calculate reaction rate analytically]

rare isotopes in stars: supernovae

[Cassiopeia A]

- Type II, Type Ia
- important <u>nuclear physics</u> :

r-process: neutron captures

weak interactions: *e.g.*, electron captures

r-process

proposed, along with s-process, by Burbidge *et al.* (1957) and Cameron (1957)

 accounts for half of the elements that are heavier than iron

r-process: observations

 abundance peaks at mass 80, 130, and 195

 accounts for production of all elements heavier than ²⁰⁹Bi

[Rolfs & Rodney (1988)]

r-process: observations

• abundances in old metal-poor stars:

[Sneden et al.]

r-process: observations

- From observations:
 - agreement with solar abundances for A >130
 - r-process insensitive to abundance of pre-existing seed nuclei
 - A < 130?

[Sneden et al. (1996)]

r-process: models

- possible <u>scenarios</u>:
 - core-collapse supernovae:
 - hot v-heated bubble: right temperature and neutron density
 - merging neutron stars
- <u>challenge</u>: connect observed abundances to astrophysical environment(s)

r-process: nuclear physics

• general framework:

- neutron captures on "seed" nuclei
- "waiting-point" reached when Q_n low enough for $(n,\gamma) (\gamma,n)$ equilibrium (15 30 units away from stability)
- $-\beta$ -decay to next isotopic chain
- neutron closed shells: major impedance to reaction flow
- decay back to stability

r-process "path"

[Rolfs & Rodney (1988)]

r-process: nuclear physics

r-process: nuclear physics

- r-process abundances from microscopic mass models with spherical shell gaps: troughs below main peaks
- calculations with shell quenching (e.g., N=82): improvement
- new measurements needed

LETTERS

The magic nature of ¹³²Sn explored through the single-particle states of ¹³³Sn

K. L. Jones^{1,2}, A. S. Adekola³, D. W. Bardayan⁴, J. C. Blackmon⁴, K. Y. Chae¹, K. A. Chipps⁵, J. A. Cizewski², L. Erikson⁵, C. Harlin⁶, R. Hatarik², R. Kapler¹, R. L. Kozub⁷, J. F. Liang⁴, R. Livesay⁵, Z. Ma¹, B. H. Moazen¹, C. D. Nesaraja⁴, F. M. Nunes⁸, S. D. Pain², N. P. Patterson⁶, D. Shapira⁴, J. F. Shriner Jr⁷, M. S. Smith⁴, T. P. Swan^{2,6} & J. S. Thomas⁶

First Results from the CARIBU Facility: Mass Measurements on the r-Process Path

J. Van Schelt,^{1,2} D. Lascar,^{3,1} G. Savard,^{1,2} J. A. Clark,¹ P. F. Bertone,¹ S. Caldwell,^{2,1} A. Chaudhuri,^{4,1} A. F. Levand,¹ G. Li,^{5,1} G. E. Morgan,⁴ R. Orford,⁵ R. E. Segel,^{3,1} K. S. Sharma,⁴ and M. G. Sternberg^{2,1} ¹Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA ²Department of Physics, University of Chicago, Chicago, Illinois 6057, USA ³Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA ⁴Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada

⁵Department of Physics and Astronomy, University of Mantoba, Withipey, Mantoba K31 2N2, Ca ⁵Department of Physics, McGill University, Montréal, Québec H3A 2T8, Canada

(Dated: July 2, 2013)

nature

arXiv:1307.0429v1 [nucl-ex] 1 Jul 2013

rare isotopes in stars: type I x-ray bursts

- <u>model</u>:
 - binary star system
 - accretion on <u>neutron star</u>
 - thermonuclear runaway
- <u>observations</u>: light curves
- <u>research areas</u>:
 - Breakout from the Hot-CNO cycles
 - rp-process: path, endpoint, synthesis
 - αp -process \rightarrow key reactions
- <u>experiments</u>: proton-rich rare isotopes
 - (p, γ) and (α ,p) reactions
 - mass measurements

accreting neutron star: x-ray bursts

rp-process: beginnings

explosive hydrogen-helium burning (T > 0.5 GK)

 \rightarrow breakout from the Hot-CNO cycles

[figure adapted from C. Iliadis (2007)]

rp-process, cont'd

after breakout from Hot-CNO cycles:

• (α ,p) and (p, γ) on proton-rich nuclei \rightarrow production of heavier elements

• energy generation and timescale set by "waiting-point" nuclei:

e.g., ³⁰S, ⁵⁶Ni, ⁶⁴Ge, ⁶⁸Se

• reaction flow: competition between β -decay and reactions

• (α ,p) and (p, γ) reaction rates:

often calculated with statistical models (e.g., Hauser-Feshbach) need experimental verification

rp-process, cont'd

[type I x-ray burst – neutron star: $1.3M_{sun}$, R = 8 km, T_{peak} = 1.4 GK, τ = 100 s]

[nucleosynthesis study: A. Parikh et al., Ap.J.Supp. Ser. (2008); PRC (2009)]

rp-process: experiments

[H. Schatz (2012)]

Measurement of the ¹⁸Ne(α , p_0)²¹Na Reaction Cross Section in the Burning Energy Region for X-Ray Bursts

P. J. C. Salter, ¹ M. Aliotta, ^{1,*} T. Davinson, ¹ H. Al Falou, ² A. Chen, ² B. Davids, ² B. R. Fulton, ³ N. Galinski, ^{2,4} D. Howell, ^{2,4} G. Lotay, ¹ P. Machule, ² A. StJ. Murphy, ¹ C. Ruiz, ² S. Sjue, ² M. Taggart, ³ P. Walden, ² and P. J. Woods¹

PHYSICAL REVIEW C 84, 045802 (2011)

First measurement of the ${}^{33}Cl(p, \alpha){}^{30}S$ reaction

C. M. Deibel,^{1,2,*} K. E. Rehm,² J. M. Figueira,^{3,2} J. P. Greene,² C. L. Jiang,² B. P. Kay,² H. Y. Lee,² J. C. Lighthall,^{2,4} S. T. Marley,^{2,4} R. C. Pardo,² N. Patel,^{2,5} M. Paul,⁶ C. Ugalde,^{2,7,8} A. Woodard,² A. H. Wuosmaa,⁴ and G. Zinkann²

 PRL 106, 252503 (2011)
 PHYSICAL REVIEW LETTERS
 week ending 24 JUNE 2011

 Ground-State Proton Decay of ⁶⁹Br and Implications for the ⁶⁸Se Astrophysical Rapid Proton-Capture Process Waiting Point

 A. M. Rogers,^{1,2,3,*} M. A. Famiano,^{4,3} W. G. Lynch,^{1,5,3} M. S. Wallace,⁶ F. Amorini,⁷ D. Bazin,¹ R.J. Charity,⁸ F. Delaunay,⁹ R. T. de Souza,¹⁰ J. Elson,⁸ A. Gade,^{1,5} D. Galaviz,^{1,3} M.-J. van Goethem,¹¹ S. Hudan,¹⁰ J. Lee,¹ S. Lobastov,¹² S. Lukyanov,¹² M. Matoš,^{1,3} M. Mocko,⁶ H. Schatz,^{1,5,3} D. Shapira,¹³ L. G. Sobotka,⁸ M.B. Tsang,¹ and G. Verde¹⁴

PRL 106, 112501 (2011)	PHYSICAL REVIEW LETTERS	week ending 18 MARCH 2011
Direct Mass Measurements of Short-Lived $A = 2Z - 1$ Nuclides ⁶³ Ge, ⁶⁵ As, ⁶⁷ Se, and ⁷¹ Kr and Their Impact on Nucleosynthesis in the rp Process		
X. L. Tu, ^{1,2} H. S. Xu, ^{1,*} M. W J. W. Xia, ¹ G. Audi, ⁷ K. Blaum, R. S. Mao, ¹ B. Mei, ¹ P. Shuai, ⁸	Vang, ¹ Y. H. Zhang, ¹ Yu. A. Litvinov, ^{3,4,1} Y. Sun, ^{5,1} H. Schatz ³ C. M. Du, ^{1,2} P. Geng, ^{1,2} Z. G. Hu, ¹ W. X. Huang, ¹ S. L. Jin, ^{1,2} ⁸ Z. Y. Sun, ¹ H. Suzuki, ⁹ S. W. Tang, ^{1,2} J. S. Wang, ¹ S. T. Wa	, ⁶ X. H. Zhou, ¹ Y. J. Yuan, ¹ L. X. Liu, ^{1,2} Y. Liu, ¹ X. Ma, ¹ ng, ^{1,2} G. Q. Xiao, ¹ X. Xu, ^{1,2}

Г

T. Yamaguchi,¹⁰ Y. Yamaguchi,¹¹ X. L. Yan,^{1,2} J. C. Yang,¹ R. P. Ye,^{1,2} Y. D. Zang,^{1,2} H. W. Zhao,¹ T. C. Zhao,¹

X. Y. Zhang,¹ and W. L. Zhan¹