EBSS-13 – nuclear astrophysics

Alan Chen Department of Physics and Astronomy McMaster University

McMaster University, Hamilton

nuclear astrophysics: goals

- seek to understand:
 - energy generation in stars
 - origin of the elements

[Burbidge, Burbidge, Fowler and Hoyle (1957)] [Cameron (1957)]

[recent review: J. José and C. Iliadis, Rep. Prog. Phys. (2011)]

[textbooks: D. Clayton, Stellar Evolution and Nucleosynthesis (1983) C. Rolfs and W. Rodney, Cauldrons in the Cosmos – Nuclear Astrophysics (1988) C. Iliadis, Nuclear Physics of Stars (2007)]

nuclear astrophysics: big picture

nuclear astrophysics: progress

nuclear astrophysics: progress

stellar evolution: hydrostatic "quiescent" burning

$$\frac{dP(r)}{dr} = -\frac{Gm(r)\rho(r)}{r^2}$$

[hydrostatic equilibrium]

$$\frac{dm(r)}{dr} = 4\pi r^2 \rho(r)$$

[mass continuity]

$$\frac{dT(r)}{dr} = -\frac{3\kappa(r)\rho(r)L(r)}{(4\pi r^2)(16\sigma)T^3(r)}$$

[radiative diffusion]

$$\frac{dL(r)}{dr} = 4\pi r^2 \varepsilon(r)$$

[thermal equilibrium]

stellar evolution: hydrostatic "quiescent" burning

$$\frac{dP(r)}{dr} = -\frac{Gm(r)\rho(r)}{r^2}$$
 [hydrostatic equilibrium]
$$\frac{dm(r)}{dr} = 4\pi r^2 \rho(r)$$
 [mass continuity]

$$\frac{dT(r)}{dr} = -\frac{3\kappa(r)\rho(r)L(r)}{(4\pi r^2)(16\sigma)T^3(r)}$$
 [radiative diffusion]

$$\frac{dL(r)}{dr} = 4\pi r^2 \varepsilon(r)$$
 [thermal equilibrium]

plus: ideal gas law, Stefan –Boltzmann law, Kramers opacity approximation, and

$$\varepsilon(r) = \varepsilon_o \rho^2(r) T^{\nu}(r)$$
 [energy generation]

stellar evolution: hydrostatic "quiescent" burning

- ϵ (r) for "main sequence" stars: 4p \rightarrow ⁴He + ~26 MeV
 - proton-proton chains (Sun):
 - $p + p \rightarrow d + e^+ + v_e$: slowest reaction
 - stellar lifetime ~ several billion years
 - $v \sim 4$
 - <u>CNO cycles</u> (Sirius A, ~ 2 M_{sun}):
 - ¹⁴N(p,γ)¹⁵O: slowest reaction
 - stellar lifetime < a billion years
 - v~20

stellar evolution: helium burning

- core hydrogen exhausted \rightarrow helium core contracts
 - ρ_{core} and T_{core} increase
 - <u>core helium burning</u> is ignited:
 - 3α reaction
 - ¹²C(α,γ) ¹⁶O

beyond core helium burning in massive stars

• core: helium \rightarrow carbon \rightarrow oxygen \rightarrow neon \rightarrow silicon

[temperature]

 T_{core} ~ 10⁹ K : nuclear reactions in equilibrium with their inverses

≻

 \rightarrow isotopic abundances:

Nuclear Statistical Equilibrium (NSE)

massive stars, cont'd: nuclear statistical equilibrium

- core: silicon \rightarrow T_{core} ~ 10⁹ K
 - $\therefore \alpha$ -captures on ²⁸Si \rightarrow heavier nuclei
- (thermodynamic) equilibrium: $\frac{n_A n_{\alpha}}{n_{[A+\alpha]}} \propto \exp(-\Delta Q/kT)$ n = number density
 - ΔQ = energy change in α -capture

 $\therefore \Delta Q > 0 \rightarrow [A + \alpha]$ favored

 $\Delta \mathbf{Q} < \mathbf{0} \rightarrow \mathbf{A}$, α favored

massive stars, cont'd: nuclear statistical equilibrium

• α -captures in NSE: $\Delta Q > 0 \rightarrow [A + \alpha]$ favored

 $\Delta Q < 0 \rightarrow A$, α favored

- since B.E./A \sim max near A = 56:
 - $\Delta Q > 0$ for A < 56 (and $\Delta Q < 0$ for A > 56)
 - .:. equilibrium takes light nuclei toward A = 56
 - \rightarrow IRON PEAK in abundance distribution

Nuclear energy source exhausted \rightarrow core collapse \rightarrow \rightarrow explosion (type II supernova)

rare isotopes in stars: supernovae

[Cassiopeia A]

- Type II, Type Ia
- important <u>nuclear physics</u> :

r-process: neutron captures weak interactions: *e.g.*, electron captures

rare isotopes in stars: type I x-ray bursts

- <u>model</u>:
 - binary star system
 - accretion on <u>neutron star</u>
 - thermonuclear runaway
- <u>observations</u>: light curves
- <u>research areas</u>:
 - Breakout from the Hot-CNO cycles
 - rp-process: path, endpoint, synthesis
 - αp -process \rightarrow key reactions
- <u>experiments</u>: proton-rich rare isotopes
 - (p, γ) and (α ,p) reactions
 - mass measurements

rare isotopes in stars: classical novae

- <u>models</u>:
 - binary star system
 - accretion on white dwarf
 - thermonuclear runaway
- <u>observations</u>: ejecta spectroscopy presolar meteoritic grains
- <u>research areas</u>:
 - Ne-Na, Mg-Al cycles
 - reactions affecting synthesis of:
 - γ-emitters (*e.g.*, ¹⁸F, ²²Na, ²⁶Al)
 - isotopes in meteoritic grains
 - elements in ejecta
- <u>experiments</u>: proton-rich rare isotopes
 - (p, γ) and (p, α) reactions

[Nova Pyxidis]

rare isotopes in stars: gamma-ray astronomy (²⁶Al, ⁴⁴Ti)

- <u>observations</u>: γ-ray emission from ²⁶Al decay
 - diagnostic of ongoing nucleosynthesis
 - constraint on galactic chemical evolution

- <u>models</u>: need ²⁶Al yield predictions for different stars (e.g., supernovae, classical novae, AGB stars)
- important <u>reactions</u> affecting ²⁶Al synthesis:

²⁵Al(p,γ)²⁶Si ²⁶Al(p,γ)²⁷Si

[Cassiopeia A]

nucleosynthesis in the lab

• explosive hydrogen/helium burning:

T ~ 0.1 – few GK

$$\rightarrow$$
 E_{cm} ~ 100 keV – few MeV

- unstable nuclei are important
- goal: cross-sections \rightarrow thermonuclear reaction rates
- direct and indirect approaches

nuclear reactions: cross section

- drastic fall at low energies
- resonance peaks

nuclear cross section: features

 steep drop and peaks: quantum mechanics

Schrödinger's equation:
 → wavefunctions

continuity of wavefunction and derivative:
 → wavefunction amplitudes

[[]figure from C. Iliadis (2007)]

nuclear cross section features

- good matching of (radial) wavefunction at boundaries
- large amplitude of wavefunction inside

cross sections: Coulomb barrier

٠

[figure from C. Iliadis (2007)]

transmission coefficient:

$$T \approx \exp\left(-\frac{2}{\hbar}\int_{R_0}^{R_c}\sqrt{2m[V(r)-E]}\right)$$

for s-waves and low energies:

$$T \approx \exp\left(-\frac{2\pi}{\hbar}\sqrt{\frac{m}{2E}}Z_1Z_2e^2\left[1+\frac{2}{3\pi}\left(\frac{E}{V_C}\right)^{3/2}\right]+\dots\right)$$

• leading term:

$$T \approx \exp\left(-\frac{2\pi}{\hbar}\sqrt{\frac{m}{2E}}Z_1Z_2e^2\right) \equiv \exp(-2\pi\eta)$$
[Gamow factor]

cross sections: resonances

• Breit-Wigner formula:

• Applications:

extract J^{π} , E_r , Γ 's from data parameterize "narrow resonances" for reaction rates

cross sections: partial widths

• partial width: probability for formation/decay of resonance

$$\Gamma_p = 2 \frac{\hbar^2}{mR^2} P_\ell C^2 S \theta_p^2$$

- P_I : penetration factor
- C²S: spectroscopic factor (with CG coefficient)
- θ^2 : single-particle reduced width

thermonuclear reactions

• reaction rate: $r_{12} = N_1 N_2 \int_0^\infty v P(v) \sigma(v) dv = N_1 N_2 \langle \sigma v \rangle_{12}$

• stellar plasma: use Maxwell-Boltzmann distribution:

$$\langle \sigma v \rangle_{12} = \left(\frac{8}{\pi \,\mu_{12}}\right)^{1/2} \frac{1}{(kT)^{3/2}} \int_0^\infty E \,\sigma(E) \exp(-\frac{E}{kT}) \,dE$$

(thermonuclear reaction rate)

thermonuclear reactions: network

$$\begin{aligned} \frac{d(N_{25}_{A1})}{dt} = & N_{H} N_{24}_{Mg} \langle \sigma v \rangle_{24}_{Mg(p,\gamma)} + N_{4}_{He} N_{22}_{Mg} \langle \sigma v \rangle_{22}_{Mg(\alpha,p)} \\ &+ N_{25}_{Si} \lambda_{25}_{Si(\beta^{+}\nu)} + N_{26}_{Si} \lambda_{26}_{Si(\gamma,p)} + \dots \\ &- N_{H} N_{25}_{A1} \langle \sigma v \rangle_{25}_{A1(p,\gamma)} - N_{4}_{He} N_{25}_{A1} \langle \sigma v \rangle_{25}_{A1(\alpha,p)} \\ &- N_{25}_{A1} \lambda_{25}_{A1(\beta^{+}\nu)} - N_{25}_{A1} \lambda_{25}_{A1(\gamma,p)} - \dots \end{aligned}$$

[from C. Iliadis (2007)]

thermonuclear reactions: Gamow peak

• substitute
$$\sigma(E) = \frac{1}{E} \exp(-2\pi\eta) S(E)$$

into $\langle \sigma v \rangle_{12} = \left(\frac{8}{\pi \mu_{12}}\right)^{1/2} \frac{1}{(kT)^{3/2}} \int_0^\infty E \sigma(E) \exp(-\frac{E}{kT}) dE$

$$\Rightarrow \langle \sigma v \rangle \sim \int_0^\infty S(E) \exp(-2\pi\eta) \exp(-E/kT) dE$$

"Gamow peak"

energy range within which most reactions occur

[S(E) : astrophysical S-factor]

thermonuclear reactions: Gamow peak

[figure from Iliadis (2007)]

thermonuclear reaction: narrow resonances

[broad resonances: widths are energy-dependent \rightarrow calculate reaction rate analytically]