Fundamental Symmetries and FRIB

J. Singh and J. Engel

August 2, 2017

Framework

Rough definition of "Fundamental Symmetries"

Search for beyond-standard-model physics at low energies Study of symmetry-violating interactions in the nucleus

Examples

```
0\nu\beta\beta decay and lepton-number violation \beta decay and breaking/extension of SU(2)<sub>L</sub> EDMs and beyond-standard-model CP/T violation P-violating nucleon-nucleon interaction \vdots
```

FRIB at day 1 and after can contribute in two distinct ways

- 1. Experiments to see BSM effects online
- 2. Contributions to offline experiments

```
Preparatory work (e.g. for EDM searches)
Finding good isotopes
Harvesting isotopes (Greg Severin's talk)
Measurements to constrain theory necessary to interpret expts.
```

Examples of Experiments of Different Kinds

Experiments to see BSM effects

 β -decay electron spectrum to search for scalar and tensor currents

Preparatory Work

Laser spectroscopy for EDM experiments (later in this talk)

Finding good isotopes for atomic EDM experiments

J = 1/2 parity doublets for Schiff momentsHigher-spin doublets for magnetic quadrupole moment

Producing Isotopes

²²⁵Ra for EDM experiments
 ^{221,223}Rn, ²²⁹Pa for possible EDM experiments
 Fr isotopes for PNC experiments

and ...

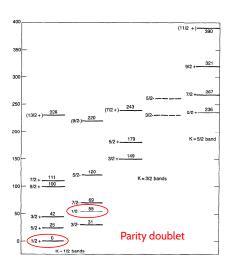
Measurements to Constrain Theory

- Octupole moment of ²²⁵Ra (planned at ANL)
- ▶ ²²⁵Ra on isoscalar target (or vice versa) to measure isoscalar dipole strength?
- Proxy for V_{PT} (e.g. $\vec{\sigma} \cdot \vec{r}$)?
- Magnetic quadrupole operator or proxy?
- Momentum dependence of " g_A quenching" for $\beta\beta$ decay: charge-changing cross sections at non-zero q?

Let's look at Schiff moments (radially weighted EDMs that transmit T violation to atomic electrons) and focus on ²²⁵Ra...

Uncertainties in Schiff Moments

Schiff operator:


$$S_z \propto \sum_{i=1}^A e_i r_i^2 z_i + \dots$$

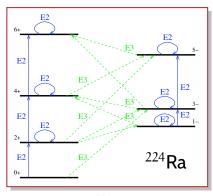
Leading-order PT-violating Hamiltonian contains unknown constant in each of three isospin channels. Schiff moment reflects action of both S_z and $V_{\rm PT}$.

	isoscalar	isovector	isotensor
¹⁹⁹ Hg	0.005 - 0.05	-0.03 - +0.09	0.01 — 0.06
¹²⁹ Xe	-0.005 — -0.05	-0.003 — -0.05	-0.005 — -0.1
²²⁵ Ra	-1 — -6	4 — 24	- 3 — - 15

Recommended range of normalized Schiff moments corresponding to different terms in V_{PT} , based on spread in reasonable calculations

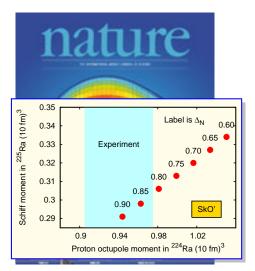
Octupole Deformation and ²²⁵Ra

Unlike in Hg, these two states are the whole story.

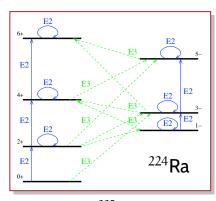

$$|rac{1}{2}^{\pm}
angle = rac{1}{\sqrt{2}} ig(|lackbrack| \pm |lackbrack|ig)$$

$$\begin{split} \langle S_z \rangle &\approx 2 \sum_{m} \frac{\langle 0 | S_z | m \rangle \langle m | V_{PT} | 0 \rangle}{E_0 - E_m} \\ &\longrightarrow 2 \frac{\langle \frac{1}{2}^+ | S_z | \frac{1}{2}^- \rangle \langle \frac{1}{2}^- | V_{PT} | \frac{1}{2}^+ \rangle}{E_+ - E_-} \end{split}$$

Reducing Uncertainty: Ra



 $\langle 1/2^-|S_z|1/2^+\rangle$ correlated with octupole moment, which is extracted from E2 and E3 rates.


Rates in ²²⁵Ra to be measured at ANL.

Reducing Uncertainty: Ra

Strength of neutron pairing constrained by octupole moment

 $\langle 1/2^-|S_z|1/2^+\rangle$ correlated with octupole moment, which is extracted from E2 and E3 rates.

Rates in ²²⁵Ra to be measured at ANL.

The Future for Ra

Measurement of isoscalar dipole strength between members of parity doublet?

Operator is isoscalar version of Schiff operator.

Can we measure
$$\langle 1/2^-|\sum_{i=1}^A r_i^2 z_i|1/2^+\rangle$$
?

Would provide an even better constraint than the octupole moment.

The Future for Ra

Measurement of isoscalar dipole strength between members of parity doublet?

Operator is isoscalar version of Schiff operator.

Can we measure
$$\langle 1/2^-|\sum_{i=1}^A r_i^2 z_i |1/2^+\rangle$$
?

Would provide an even better constraint than the octupole moment.

Measurements to help with matrix element of time-reversal violating potential?

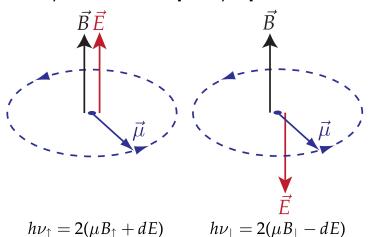
In one-body approximation $V_{PT} \approx \vec{\sigma} \cdot \vec{\nabla} \rho$

The closest simple one body operator is $\vec{\sigma} \cdot \vec{r}$.

Can we measure $\langle 1/2^- | \vec{\sigma} \cdot \vec{r} | 1/2^+ \rangle$ or something like it?

What about charge-changing transition strength to isobar analog of $|1/2^-\rangle$ in 225 Fr? Axial-charge β decays in other nuclei?

 V_{PT} is similar to two-body current operator in axial-charge channel.


In the Meantime

Getting Theory Ready for Day 1

- **b** Better 0νββ matrix elements
 - Topical collaboration devoted to this and part of the next item.
- Better calculations of Schiff and anapole moments Will require improved density functionals with well-determined statistical uncertainty.
- Ab initio calculations of interesting beta decay matrix elements, including recoil-order terms
- Improved calculations of radiative corrections in superallowed beta decay
 - $W \gamma$ box diagram particularly important.
- Linear response for understanding g_A quenching
 Both ab initio and density-functional methods important.
- **:**

Some Thoughts On EDM Experiments

Always Measure Frequency: Spin Precession

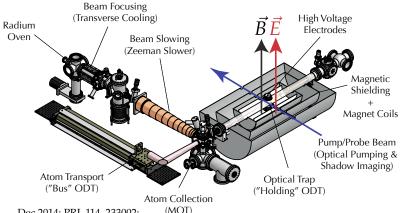
Ultimate Statistical Sensitivity

$$\Delta
u =
u_{\uparrow} -
u_{\downarrow} = rac{4dE}{h}$$

statistical sensitivity:

$$\sigma_d = rac{h}{2E\sqrt{\epsilon N_a T au}}$$
Electric particle integration time field number time

Magnetic Field Instabilities & False Effects!


$$\Delta
u =
u_{\uparrow} -
u_{\downarrow} = rac{4dE}{h} + rac{2\mu(B_{\uparrow} - B_{\downarrow})}{h}$$

Instabilities adds noise & limits the statistical precision.

False effects, things which change sign with the electric field, are nasty: "leakage current"

State of the Art: ²²⁵Ra EDM Laser Trap Experiment

Dec 2014: PRL 114, 233002: $|d(Ra-225)| < 50x10^{-23} e \text{ cm } (95\%)$

June 2015: PRC 94, 025501: | d(Ra-225) | < 1.4x10⁻²³ e cm (95%)

adapted from Matt Dietrich ANL

What Would A "Dream" Experiment Look Like?

- Large intrinsic sensitivity to BSM physics
 - high Z (199Hg, 205Tl, 225Ra, 221,223Rn, 229Pa)
 - octupole deformed nucleus (225Ra, 221,223Rn, 229Pa)
- Large *E*-field or *B*-field gradient to amplify observable
 - internal molecular fields (diatomic & triatomic molecules)
 - local crystal fields (solids)
 - unshielded nucleus (ions in an ion trap or storage ring)
- Repeat the measurement as many times as possible
 - large number of nuclei (stable)
 - long integration time (stable, long $\tau_{1/2}$, or steady supply for short $\tau_{1/2}$)
 - long measurement time (long coherence and/or trapping times)
- High efficiency extraction of experimental signal
 - convert a large fraction of "source" nuclei into "signal" nuclei
 - make a high SNR detection of each "signal" nucleus (many photons)

One Possibility: Actinide Ions (229Pa) in Optical Crystals

- Large intrinsic sensitivity to BSM physics
 - high Z (199Hg, 205Tl, 225Ra, 221,223Rn, 229Pa)
 - octupole deformed nucleus (225Ra, 221,223Rn, 229Pa)
- Large *E*-field or *B*-field gradient to amplify observable
 - local crystal fields with large spin-orbit couplings (solids)
- Repeat the measurement as many times as possible
 - large number of nuclei (stable)
 - long integration time (FRIB: steady supply for short $\tau_{1/2}$)
 - long trapping time: nuclei "stored" in the solid
 - long coherence time (for suitably chosen energy levels...>1 s for lanthanide ions in optical crystals used for quantum information)
- · High efficiency extraction of experimental signal
 - near unity capture and trapping efficiency in solid
 - optical detection via laser probing
 - major areas for development pre-FRIB: optically-detected NMR and overcoming inhomogenous broadening

Imaginary FRIB Experimental Fun. Sym. Timeline

1. Before FRIB

- nuclear structure measurements & calculations (225Ra, 221,223Rn, 229Pa)
- development of experimental techniques (CRES, implantation beta spectroscopy, beta decay polarimetry, Ra EDM laser trap experiment, spectroscopy of atoms & molecules in solids, two-photon spectroscopy of noble gases)
- harvesting studies at NSCL (Severin Talk)

2. FRIB Day 1

- nuclear structure measurements (what is still needed ²²⁹Pa?)
- development of experimental techniques with FRIB isotopes (CRES, implantation beta spectroscopy, beta decay polarimetry, spectroscopy of actinide ions & RaO molecules in solids, two-photon spectroscopy of Radon)
- harvesting studies at FRIB (Severin talk)

3. FRIB Long Term

- beta decay spectroscopy & polarimetry with isotopes online at FRIB
- harvesting of ²²⁵Ra for laser trap experiment (statistics+systematics)
- actinide ion (229Pa) in solid based "EDM"-type search at MSU?
- molecule based ²²⁵Ra EDM experiment somewhere?