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DOE Nuclear Physics Mission is to understand the fundamental forces and particles of nature as manifested
in nuclear matter, and provide the necessary expertise and tools from nuclear science to meet national needs

DOE Nuclear Physics Mission is accomplished by supporting scientists who
answer overarching questions in major scientific thrusts of basic nuclear physics research
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DOE Nuclear Physics Mission is to understand the fundamental forces and particles of nature as manifested

in nuclear matter, and provide the necessary expertise and tools from nuclear science to meet national needs

DOE Nuclear Physics Mission is accomplished by supporting scientists who
answer overarching questions in major scientific thrusts of basic nuclear physics research
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What is the nature of the
nuclear force that binds
rotons and neutrons into
stable nuclei and rare
isotopes?
What is the origin of
simple patterns in
complex nuclei?

What is the nature of
neutron stars and dense*
nuclear matter?

What is the origin of the
elements in the cosmos”

What are the nuclear
reactions that drive star
and stellar explosions?

Why is there now more
matter than antimatter in
the universe?

Overarching questions are answered by rare isotope research

What are new applications
of isotopes to meet the

needs of society? .

17 Benchmarks from NSAC RIB TF measure capability to perform rare isotope research
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Some basics:

« Classification, motivation, definitions

Single channel scattering:

«  S-matrix, phase shift, T-matrix, scattering amplitude, resonances

* including Coulomb

Optical potential and absorption

Multi-channel equation

»  reaction cross section

« detailed balance

Integral forms

«  Lipmann-Schwinger Equation,

« two potential formula,

« Distorted wave Born approximation

Three-body methods:

«  Faddeev, Continuum Discretized Coupled Channel, Adiabatic Wave
Approximation

Perspectives



Direct reactions

transfer momentum is small compared to initial momentum
typically peripheral

short timescale (1022 s)

E>10 MeV

mostly one step

final states keep memory of initial states

Resonance reactions

reactions that go through a resonance (peak in the cross section)
intermediate step in the reaction

longer timescale (depends of lifetime of resonance)

Compound reactions

longer timescale

many steps in the reaction

all nucleons share the beam energy
loss of memory from the initial state
low energy reactions
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FIG. 10. Elastic scattering for *He+ *C at 38.3 MeV/nucleon in
comparison with the OM results given by the real folded potential
(obtained with the CDM3Y6 interaction and the Gaussian ga den-
sity for °He). The dashed curve is obtained with the unrenormal-
ized folded potential only. The solid curve is obtained by adding a
complex surface polarization potential to the real folded potential.
Its parameters, and those of the imaginary part, are explained in the
text. The dotted line is obtained by folding the CDM3Y6 interaction
with the compact Gaussian density ro.

[Lapoux et al, PRC 66 (02) 034608]

traditionally used to
extract optical potentials,
rms radii, density
distributions.
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Fig. 2. Comparison of B(E1) values obtained from lifetime and Coulomb ex-
citation measurements. The weighted average of lifetime measurements [3]
(open circle) is plotted on the left along with the weighted average (solid cir-
cle) of three Coulomb excitation measurements (solid symbols). The individual
Coulomb excitation measurements, GANIL (this work, square). MSU (up Lri-
angle) [6]. RIKEN (down triangle) [7]. and a previous GANIL experiment
(diamond) [4], are plotted versus the beam energy.
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traditionally used to study
shell structure: extract

spin,parity and

spectroscopic factors
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FIG. 3 (color online). Differential cross sections of the (p. t)
reaction to the ground state of °Li and to the first excited state
(insert). Theoretical predictions using four different wave func-
tions were shown by curves. See the text for the difference of the
wave functions.

11 j(p,t)°Li@ 3 A MeV

measured both ground state and excited state °Li
[Tanihata et al, PRL 100, 192502 (2008)]

traditionally used to study
two nucleon correlations
and pairing
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Fig. 14.9. Schematic of a nuclear knockout reaction. Reprinted from [3] with
permission.

Includes elastic and inelastic
breakup as well as transfer

traditionally used to study
shell structure
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traditionally used to study
halos, states in the

continuum, and transition

strengths to bound states
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Fig. 1. Doppler corrected y-ray spectra measured in coincidence
with an 220 fragment and one neutron for Pb (symbols) and C
(shaded area) targets. Arrows indicate the strongest y transitions
as expected from the 220 level scheme of Ref. [10] (partial level
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FIG. 5. The differential cross sections for the energy bin 1.75 <
E.(**Co) < 2.0 MeV and the result of the MDA (solid line) using
a linear combination of 1% (dashed line) and 2% (dotted line)
components. The error bars in the data are of statistical nature only.

traditionally used to study
Gamow Teller transitions

PHYSICAL REVIEW C 74, 034333 (2006)
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FIG. 7. (Color online) (a) Comparison of the results of the
3¥Ni(d,?He) and **Ni(r,’He) experiments and the theoretical pre-
dictions. A binning of 1 MeV was applied and the theory was folded
with the experimental resolution of the (1,*He) experiment (250 ke V)
before binning. (b) Comparison of the results of the **Ni(n, p) and
3¥Ni(r,*He) experiments and the theoretical predictions. A binning of
1 MeV was applied. Note the 0.5-MeV shift relative to a). The (t,>He)
data set and theory were folded with the experimental resolution of
the (n, p) experiment (1.3 MeV) before binning.



Fusion of Stable vs Unstable Nuclei
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Fig. 8. Reduced cross sections for the fusion of halo, nor-
malAveakly bound, and strongly bound nuclei. (Courtesy of
Kolata).

After geometric effects are scaled out, fusion enhanced for halo
nuclei!

Superheavies
Halos
Applications: energy
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The overlap function for ?C — n+'®C in arbitrary units. The
radial sensitivity of the *C(d,p)"C cross section is represented
by the colored bars for different beam energies.
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Direct reactions (ID): 1o
Forward peaked (large b)

TR

103

do/dQ {mb/sr)
- _
N

Compound reactions (NC): =
Distribution is generally E

isotropic (except for heavy -

ion collision where L large) 10

T T TTTT

RBRRRLL

- 25Mg(p,p)?SMg
 Ep =6Mev

vl

T IR

o

. R I R N
0° 30° 60° 90° 120° 150°
ocm A




-2 2 laboratory
[— Y Vi, + V(ra—rp) — Etot:| W(ra,rp) =0.

2m3 B

Center of mass

12 72
|:_ 2map V§ - ﬂvlzl + V(R) — Etot] Y(S,R) =0.
V(S.R) =2 (S)¥ (R)

hz

®(S) = Aexp(iK - S) 3 Vs P) = (Ea—E) ()

2
and [—f—uvﬁ + V(R)] ¥ (R) = E ¥ (R)




The number of particle entering a detector depends on:
« solid angular size of detector

« number of scattering centers in the target
« flux of the incident beam

 the cross sectional area for the reaction to occur

dN
— =Jin AQ2 o
dt

i=viyl
O




Definition of cross section:

the area within which a projectile and a target will interact
and give rise to a specific product.

Units 1b (barn) = 10 fm x 10 fm

If we consider just one scattering center n = 1, and measure the scattered angular
flux 1n the final state as jr (6, ¢) particles/second/steradian, then

0(0,9) =

]l
e




Total cross section:

the same in center of mass and laboratory

Angular distribution of the cross section:

o(0,¢) de sin0df = o1ap(Olab, Grab) d@rap Sin OlapdOap




Scattering theory: single channel
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Incoming beam Incoming flux k = 2nE/h?
wbeam — Aexp(ik,- . R) vV = p/,u, = hk/,u
Ji = vilAJ?

1’ﬁbeam — A eik,-z

Scattered wave Outgoing flux
e K - 2 2 P2
/A =Af(9,¢)T Jr = vrlAlT[F (0, 9) |7 /R

Asymptotic wave - ik R
1)ﬁasym — 1’bbeam + 1’ﬁscat — A eik,-z (9,¢)6R
- Scitterini imilitiie -




Scattered angular flux and incoming flux k = V21E/R

a v=p/n="nk/n
Jr =R, = vr[APIf (0.9)]

Jji = vilA|?

Cross section

o0, ) = %vw,cpnz

Renormalized scattering amplitude

~ - ’U_f ~
f(9,¢)—\/:_f(9,¢) o(B,¢) = |f (0, ¢)|




o short range potentials V(R)=0, R>R,
no Coulomb for now

o positive energy time-independent Schrodinger eq to obtain f(6,¢)
numerical solutions matched to asymptotic form

o spherical potentials V(R)=V(R)
angular momentum and energy commute
initial beam is cylindrically symm (m=0) implies scattered wave is
too: f(0,9)= f(6)

A h
I=-5-V -
= _ﬁﬁ(R ﬁ)*ﬁ




o Legendre polynomials form a complete set ) _; brL(R)Pr(cos6)

o they are eigenstates of ]2 and L,

o orthogonality relation: / " . 2
0

P )P, 6 6do = S177
(cos@)P/(cosb) sin S LL

o particular form for expansion

xL(R) 1 <d2 L(L+1)
R R \dR? R2

V,% Pj(cosB) ) X1 (R) Py (cosf)

o partial wave expansion:

V(R.6) = Z<2L+1)1LPL<cos9>—xL<R>
L=0

o partial wave equation:

> [ d*> L(L+1)
m— (i) =




o when V(R)=0, for all R o = kR
[ d? B L(L+1)

a2~ 2 ] o/ =0 =0

o Coulomb wave equation
d>  L(L+1) 2
dp? p> p

— 1] Xp(n,p) =0

o two linearly independent solutions:
regular and irregular Coulomb functions

Fr(m.p) Gr(n,p)

o two linearly independent solutions: H: _ G 4 iF
outgoing and incoming Hanckel functions 1 = YL =1L
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V(R.6) = Z<2L+1>1LPL<cos9>—xL<R>

— Z(2L+1 )il Py (cos e)kl -
L=0
LX—(:)(ZL+1)1LPL(COS e)ﬁz‘kle) ‘x)]

incoming outgoing

o at large distances the radial wavefunction_should behave as
ext(R) — A [[—]L_ (0, kR) (0, kR)]

partial wave S-matrix element




ion R) = Buj (R)
ical solution is proportional to true solutio xL(R)
o nhumeric

%) <
\/% 5 &%(@\
RS 4 2 S, .
A }%(V@ A (1?) "4 e
h ) /Q*t(l?)
ZQ(/P)




oThe matching can be done with the inverse log derivative R,
o any potential will produce R, which relates to S,

I xe(a)  Tup(a) | H- —S/H;
L== = — — -
a Hi_ — SLH£+

aypla) aup(a)
urp(0) =0 \/ \/ R

uz(o) £ () a>R, _ HL_ — aRLHi_
H —aRH;"




o to obtain the scattering amplitude need to sum the partial waves

R =R,

V(R.0) —

L=O

o homework!

— Z(2L+1 )il Pp(cos O)ALIH; (0, kR)—SH; (0, kR)]

\ oikR

I‘”aS}’m(R,Q) — eIkZ _l_f(g)T

1) = 5

Z(2L+1)PL(COS 0)(S; — 1)
L.=0

o(f) = —

1 o0
= |57 Z(2L+1)PL(cos 0)(S; — 1)

2

L=0



a)0
b) 1
) Infinity
large k — e.g. nucleus-nucleus . / d) Non of the above
1

absorption

1
| transmission
1

k(Rp + Rr)

semi — classical : S(b), ¢ =kb
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o Each partial wave S-matrix can be equivalently described with a phase shift

i 1
Sp =" SL(E) = 5-InSp +n(E)w

added to make the
phase shift

: . . _ continuous
o scattering amplitude in terms of phase shifts

| — .
() = A Z(2L+ 1)P; (cos Q)e“SL SIn oy,
L=0

o asymptotic form in terms of phase shift
XX (R) — "L[cos 8y sin(kR—Lm /2) + sin §; cos(kR—Lm /2)]
— eLsin(kR + 8; — L7 /2).
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o the partial wave T-matrix is defined as the amplitude of the outgoing wave
XEXt(R) = F7(0,kR) + TLHZ_(O, kR) SL =1+ 2iTL

o simple relation with the scattering amplitude __

I
f(O) = p ;)(2L+1)PL(COS NHT;




a)0

b) 1

) Infinity

d) Non of the above

% (R) = FL(0.kR) + T, HF(0.kR)

plane wave Scattered wave




o use properties of legendre polynomials
2 T
Ol =/ a’qbf dfsinb o ()
0 0

= 2 / do sin O|f ()] oOptical theorem:
0 total elastic cross section related
Z(zL LD =S, to zero-angle scattering amplitude
k2 L=0
71' o0
- — Z(2L+l) sin” o1, 0) — L 216, _
k2= fO) =2 L;)(ZLH)(C D).

1 o0
Imf (0) = Y @L+1)sin’ 8
L=0
k

== _Oe] .

4
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o Contribution of higher partial waves increases the higher the initial momentum

o0

|
f(O) = p §(2L+1)PL(cos NHT;

legendre polynomials

0.5 |~

Pa(x)
o
I
|

-0.5




o particles trapped inside a barrier

A

[ ~ h/t oResonance characterized by J, E, I'>0
m o will show rapid rise of phase shift
o
At ~ hdd(E)/dE
R




o S-matrix form around the resonance
(assuming a background in addition to the resonance part)

—ir,2
E—E +il/)2

S(E) = MBI E

o if analytic continuation to complex energies
S-matrix pole at E, = E,—iI'/2

o(E) = 8bg(E) + Ores (E)

['/2
Ores(E) = arctan(Er — E) + n(E)m

o in a pure case, with no background at
the resonance energy 6=r/2
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Fig. 3.2. Examples of resonant phase shifts for the /J* = 3/27 channel in low-
energy n—« scattering, with a pole at E = 0.96 — 10.92/2 MeV. There is only a
hint of a resonance in the phase shifts for the J* = 1/27 channel, but it does have
a wide resonant pole at 1.9 —16.1/2 MeV.
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Fig. 3.4. The correspondences between the energy (left) and momentum (right)
complex planes. The arrows show the trajectory of a bound state caused by a
progressively weaker potential: it becomes a resonance for L > 0 or when there is
a Coulomb barrier, otherwise it becomes a virtual state. Because E o k2. bound

states on the positive imaginary k axis and virtual states on the negative imaginary
axis both map onto the negative energy axis.




o Breit-Wigner form
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Fig.3.3. Possible Breit-Wigner resonances. The upper panel shows resonant phase
shifts with several background phase shifts dpe = 0, 7/4, 7/2 and 37 /4 in the
same partial wave. The lower panel gives the corresponding contributions to the
total elastic scattering cross section from that partial wave.




Scattering theory: single channel
Including Coulomb
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V.(R) = Z1Z>¢> /R

o pure Coulomb Schrodinger eq can be solved exactly:

Ye(k,R) = ™R e "2 T(14in) | Fi(—in: 1;i(kR — k-R))

o asymptotic form of the scattering wavefunction
oilkR—1 In 2kR]

R

Vo (k. R) Z—><><> eilkz+nInk(R—2)] +f(9)

o without partial wave expansion one can derive the scattering amplitude

_ n . ) .
fol®) = =5 exp [ —in InGin (8/2)) + Ziou(n)

Point-Coulomb cross section ;
n

4k2 sin*(0/2)

oruth (@) = |fe(0)]? =

op(n) =argl'(1 + L +1n)



o from generalized asymptotic extract the nuclear S-matrix

[
X" (R) = STH| (1, kR) — S{H, (0, kR)]
nuclear under the influence of Coulomb
o can be written in terms of the nuclear phase shift L = e

x N (R) = e'L [cos 8; Fr(n,kR) + sin 8] Gr(n, kR)]

o combined phase shift: Coulomb and “nuclear under the influence of Coulomb”

L = or(n) + df

op(n) =argl'(1 + L +1n)




=9
o
NSCL

Coulomb + “nuclear under Coulomb” phase shifts

L = or(n) + d1

e _ | — (g2lot(n _ 1) 1 e2ion(m 2180 _ 1y |

4

fnc(e) =fc(9) +fn(9)

\

— L S Qior(n) y@n
fa(0) = —— LX:(:)(ZL-FI)PL(COS 6)e (S? — 1)




One(0) = |fe(0) + (07 = [fue (0) ]2

0 /ORuth = Onc(0)/0oRuth (0)

Don't add nuclear only and Coulomb only cross sections!
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Scattering theory: single channel
The optical potential




A isolating the important degrees of freedom in a reaction
O keeping track of all relevant channels
O connecting back to the many-body problem

QA effective nucleon-nucleus interactions — optical potential
(energy dependence/non-local)
d many body input




@)l

o Where does the optical potential come from?
Consider the original many-body problem nucleons-nucleus N+A

H(rory,ro,. . ra)¥(roiry ro, . 1) = E¥(rgiriyra,. . ma)

Split the Hamiltonian into:
o kinetic energy of the projectile "/
o the interaction of the projectile with all nucleons of the target
o internal Hamiltonian of the target

H(rﬂ;rlvr%“'sr.ﬁ.) — TD

The solutions for the target Hamiltonian form a complete set:

HA(rlv Lie TR rA)(I)l(rly Ta,..., TA) - etq)i(rlf ra, ... ;rA)

The general solution for N+A can be written in terms of the complete set above:

U(re;r1,7re,...,74) = Z X;(To)q’g(rl,’”m ceeyT4)
1j
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o Feshbach projection
Since at this point we still assume in our reaction model that the target stays in the
ground state, we need to project the problem into the target ground state.

P is the projection operator: p _ |®0) (Dol
It picks up the elastic component: P¥ = xo(]?o

Properties of projection operators ~ P*W¥ = P

Q=1-P QY = QY
PQU =QPY =0

Now apply it to the full equation: (£ — H)(P + Q)¥ =0




o The scattering equation can be rewritten: (E-Ty - V("n))Xo =0

with the effective potential: V(ro) = (®o|V|®o) + (®o|VQ QV'|®o)

1
E-QHQ

oThis potential is generally non-local which gives rise to some complications:
(B = To)xo(ro) = V(ro)xo(ro) + [ £(ro, ro)xo(rs)er
Often this is approximated to a local version.

The optical model replaces this microscopic potential by a model potential
obtained phenomenologically: ( E—-T,- Uopt)Xo =0

Scattering into Q-space may never return to elastic — loss of flux
Optical potential needs to have an imaginary term!




o to account for other processes — introduce imaginary part in interaction

V.(R) + V(R) + i W(R) + V_(R)

o loss of flux - absorption (W<0)

o Nucleon potentials as described with Woods-Saxon shape
(to mimic the density distribution in nuclei)

Vi W;
V(R) = — W(R) = :
o Sometimes imaginary also defined at d/dR(V,.(r)) - surface R =r, Al/3

For nucleon-nucleus interactions V=40-50 MeV, r=1.2 fm and a=0.6-0.65 fm




or = 73 DL+ — [SL])
L

2 47
ho k2

oA =

o0
> @@L+ 1) fo [—W®R)] [xL(R)|* dR
L

For simple spherical potentials, reaction
and absorptive cross sections are the same
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energy in the relative motion

|2
E = mp/map Ex = 510}

(a) Laboratory frame

A B
‘—b _-_> L ]
. Vg= 0
v, S
(b) Center-of-mass frame
._’ . ‘_.
v, S=0 V'B




apply laws of conservation
conservation of mass ma + mp = mc + mp,

conservation of energy
consevation of momentum

QO+ Es+Ep=Ec+Ep,
PA + PB = Pc + Pb,




The n = 0 functions are more directly known in terms of Bessel functions:

FL(0,p) = pjL(p) = (wp/2) 2T 41/2(p)

GL(0,p) = —pyL(p) = —(p/) 2 Y 112(p),

Their behaviour near the origin, for p < L, 1s

FL(0, p) ~ : plt!
2L+1)(2L—1)---3.1

GL(0,p) ~ @L~1)---31p7F,
and their asymptotic behaviour when p > L is
Fr(0,p) ~ sin(p — Lz /2)
GL(0, p) ~ cos(p — Lr/2)
HLi(O, p) ~ eFio—L/D) _ FLFip,

So H I:" describes an outgoing wave e'”, and H ; anincoming wave e P,




Using: ) T S

Y(R) = ePB[Fcoss+Gsind] - F+TH* %[H— — SHH]
T |
S = b arctan , —1InS
| +iT 2i
T — 8 gin 5 T S(1-8)
S = e210 1 +2iT S
V real S real 11+ 2iT| =1 S| =1




o heutral L=0 particles: no barrier

o S-matrix pole is on negative imaginary k-axis (not a bound state!)

o scattering length kp = i/ag 'kp — i\/ zﬂEp/ h?
o S-matrix in terms of scattering length S(k) = _k +1/agp
k —1/ag

o phase shift in terms of scattering length
kcotd(k) = —1/ao




\ 177° (65 MeV)

o the cross section for a pure Coulomb
interaction is

b®) db n>

o(f) = — = . 4 '
sinf df  4k2sin*(6/2)

s |

/

o Coulomb trajectories are hyperbolas

tano— il
2 bk




oexamples
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o
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o Coulomb wave equation

d>  L(L+1) 2n
— ——————+1|Xe(n.p) =0
dp P P

Fr(n. p) = C(n)pHe®P | F(L+1 F in: 2L+2; £2ip)

2be=mn/2|0 (1 + L+ in)|

CLin = QL+1)!

az a(a+1 22 a(a+1)(a+2) 7°
b 1!  b(b+1) 2! b(b+1)(b+2) 3!

H (1, p) = GL(n, p) £ iFL(n, p)
— O (R 2ip) 1AM (14L + in, 2L+2, F2ip)

-® =p—Ln/2+o01(n) — 1 ln(2p)- op(n) =arg"(1 + L+ in)l




oBehaviour near the origin

—1
FLl1.p) ~ CLpp™*!, Grn. p) ~ | QLADCLGN ot ]

2 n VL2 4+ n?
Co(n) =

d Cr(n) =
mn 7 2nd €L LQL+1)

Cr—1(n)
A transition from small-p power law behavior to large-p oscillatory behavior occurs

outside the classical turning point. This point is where 1 = 2n/p 4+ L(L+1)/ P2,

namely

pp = £ \[n? + LIL+1). (3.1.67)

oBehaviour at large distances
FL(n,p) ~sin®, Gr(n,p) ~cos®, and Hi(n,p)~e='®

®=p—Lrx/2+or(n) —nin2p)




Reaction mechanism: target excitations Q7

2+ I ">~ 2-way transfer

12C(d,p)*3C: N — Uit

couplings 0+ I
12
C \ 1/2-

13C

— 1.5
- < —
= CCBA/DWBA ¢ 1-way couplings 52 14F CRC/CCBA * 12C(d,p)13C(gs)
I an —
- o 2-way couplings =) 135 ¢ 13C(p,d)12C(gs)
3 g °F
3 & 12
- ¢ 2 11E
- e « * . 6 F
— 1_— ___________________
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