Nuclear Structure from Decay Spectroscopy

- Most nuclei decay.
- Provides complementary information to reaction studies.
- Studies can be done at the lowest count rates – access furthest from stability.
- Alpha, proton, beta, gamma.

Decay spectroscopy vs Reactions

Decay Spectroscopy

- Production and observation widely separated in time.
- Difficult to change decays (not impossible)
- Relatively few channels available.
- Studies possible at rates lower than 1/day.

Reactions

- Production and observation close in time.
- Reaction mechanism provides some flexibility
- Many channels typically open.
- Typically requires 100 particles/second.

Decay Spectroscopy

Experimental Setups

A Sample of Experimental Setups

BCS (MSU)

Wasabi (RIKEN)

Astrobox (TAMU)

Saturn/Tape (ANL)

Rising (GSI)

Leribss (ORNL)

Tape (TRIUMF)

National Science Foundation Michigan State University

What decays?

Neutron number

Experimental Observables

- Many different types of decay spectroscopy.
 - Beta-decay
 - Alpha decay
 - Proton decay
 - Isomeric decays
- Widely varying timescales
 - nanoseconds age of universe
- Widely varying energies
 - ev to 10 MeV

- Measure three important
 quantities
 - energy
 - Where is the state?
 - half-lives
 - What is the time difference between creation and destruction?
 - branching ratios
 - Where does the decay go, what gets emitted?
- Selection rules
- Connect to underlying structure

Question

- ²¹²Bi is a member of a naturally occurring ²³²Th radioactive decay series
- The half-life of ²¹²Bi is 61 minutes.
- The decay braches at ²¹²Bi
 - 35.94% α , t_{1/2, α} = 168 min.
 - 64.06% β^{-} , $t_{1/2,\beta}$ = 94 min.
- If your experimental setup is only sensitive to β⁻ what halflife do you measure?

- A 61 min
- B 94 min
- C 168 min
- D 262 min
- E not enough information

Relationships

- Measure time distribution.
- Determine $t_{1/2}/\tau/\lambda$
- Correct for branching ratios.

Particle Emission

- Competition between decays
 - Beta decay

Adapted from M. Pfützner

Alpha Decay

$$_{Z}^{A}X \rightarrow _{Z-2}^{A-4}Y + \alpha + Q$$

- Two body decay.
- Energy split between participants.
- Q_{α} influenced by shell closure.
- Gieger-Nuttal relationship between Q_{α} and $t_{1/2}$

W. Loveland, D.J. Morrissey, and G.T. Seaborg. Modern Nuclear Chemistry H. Geiger and J.M. Nuttal, Philos. Mag. 22, 613 (1911)

Alpha Decay

- Difference between theory and experiment contains nuclear structure.
- Pre-formation factor, $|RF_{C}(R)|^{2}$

National Science Foundation Michigan State University

C. Qi *et al.*, Phys. Rev. Lett. 103, 072501 (2009) A. N. Andreyev *et al.*, Phys. Rev. Lett., 110, 242502 (2014)

Superheavy Elements

Recall talk by M. Stoyer See talk tomorrow by J. Gates

Location of the island of (enhanced) stability.

Proton Emission

$$_{Z}^{A}X \rightarrow _{Z-1}^{A-1}Y + p + Q$$

- Protons can also be emitted from nucleus.
- Conserve angular momentum and parity.
- Strong dependency between I, t_{1/2}, and Q_p.

M. Pfutzner *et al.*, Rev. Mod. Phys., 84, 567 (2012)

Two Proton Emission

- Two protons can also be emitted from nucleus.
- Strong dependency between I, t_{1/2}, and Q_p.

 $^{A}_{Z}X \rightarrow ^{A-2}_{Z-2}Y + 2p + Q$

National Science Foundation Michigan State University

M. Pfutzner *et al.*, Rev. Mod. Phys., 84, 567 (2012)

Two Proton Emission

 Angle and energy dependence between two protons.

National Science Foundation Michigan State University

Optical Time Projection Chamber

Courtesy M. Pfützner

National Science Foundation Michigan State University

M. Ćwiok *et al.*, IEEE TNS, 52, 2895 (2005) K. Miernik *et al.*, Nucl. Instrum. Methods. Phys. Res. A 581, 194 (2007)

Analysis

PMT signal sampled

CCD image

tracks of the ion and emitted particle(s)

Courtesy M. Pfützner

National Science Foundation Michigan State University

M. Ćwiok et al., IEEE TNS, 52, 2895 (2005) K. Miernik et al., Nucl. Instrum. Methods. Phys. Res. A 581, 194 (2007) ⁴⁵Fe

National Science Foundation Michigan State University

EBSS 2014

2р

⁴⁵Fe

Courtesy M. Pfützner

National Science Foundation Michigan State University

K. Miernik *et al.*, Phys. Rev. Lett. 99, 192501 (2007)

⁴⁵Fe

Courtesy M. Pfützner

National Science Foundation Michigan State University

K. Miernik *et al.*, Phys. Rev. Lett. 99, 192501 (2007)

Outlook

Courtesy M. Pfützner

National Science Foundation Michigan State University

M. Pfutzner *et al.*, Rev. Mod. Phys., 84, 567 (2012)

What is beta decay?

- Mediated by the weak interaction.
- Conversion of neutron into proton or vice versa
- Three different forms
 - B- decay
 - B+ decay
 - Electron Capture

 $p \rightarrow n + e^{+} + v_{e}$ $n \rightarrow p + e^{-} + \bar{v}_{e}$ $p + e^{-} \rightarrow n + v_{e}$

⁶³ Zn	⁶⁴ Zn	⁶⁵ Zn	⁶⁶ Zn	⁶⁷ Zn
⁶² Cu	⁶³ Cu	⁶⁴ Cu	⁶⁵ Cu	⁶⁶ Cu
⁶¹ Ni	⁶² Ni	⁶³ Ni	⁶⁴ Ni	⁶⁵ Ni

Question

- Order the fundamental forces in order of increasing strength.
 - A weak, strong, electromagnetic, gravitational
 - B gravitational, weak, strong, electromagnetic
 - C strong, weak, electromagnetic, gravitational
 - D-weak, gravitational, electromagnetic, strong
 - E gravitational, weak, electromagnetic, strong

Q values

- Three body process
- Beta-decay Q-value determined from masses.
- Q_{β-}: Mass [^AZ] Mass [^A(Z+1)]
- $Q_{\beta+}$: Mass [^AZ] Mass [^A(Z+1)] - $2m_ec^2$
- Q_{EC}: Mass [^AZ] Mass [^A(Z-1)]
- Q values can range up to many MeV
- ⁶⁰Fe 0.260 MeV
- ⁶³Co 11.2 MeV

EBSS 2014

Selection Rules

- Beta decay follows selection rules.
- Electron, neutrino are spin ½ particles.
 - S = 1 parallel
 - S = 0 antiparallel
- Allowed approximation
 - Relative angular momentum of electron/neutrino is 0
- Fermi
 - -S = 0
 - $\Delta J = |J_i J_f| = 0$
- Gamow-Teller
 - S = 1
 - $\Delta J = |J_i J_f| = 1$

ParentDaughterCharacter
6
He (0+) 6 Li (1+)Gamow-
Teller 14 O (0+) 14 N
(0+,2.313
MeV)Fermi
(0+,2.313)
MeV)n (1/2+)p (1/2+)mixed

$$^{A}X \rightarrow ^{A}Y + e^{-} + \bar{\nu}_{e}$$

Decay Rate

- Beta decay rate depends on three factors
 - Matrix element (nuclear structure)
 - Density of final states
 - Coulomb field from nucleus
- Fermi integral, f, is tabulated depends on
 - Daughter Z
 - End point
- Forbidden decays
 - ~ x10⁻⁴ per degree of forbiddeness

Matrix Elements

$$f(Z'E_0)t_{\frac{1}{2}} = \frac{K}{g^2 |M_{fi}|^2}$$
$$f(Z'E_0)t_{\frac{1}{2}} = \frac{C}{B(F) + B(GT)}$$

• Isospin raising/lowering operator

- Behavior of *f* as a function of Q value.
- Half-life energy dependence ~E⁵
 - All things being equal
- Empirical functions can also be used.

Log ft

B. Singh, J.L.Rodriguez, S.S.M. Wong, J.K. Tuli, NDS, 84, 487 (1998)

National Science Foundation Michigan State University

Simple Example – odd-A Co

- Odd-A ^{63,65,67,69}Co isotopes.
- Known half-lives and branching ratios.
- Dominated by simple $vf_{5/2}$ to $\pi f_{7/2}$ transition.

Beta-decay strength

Courtesy R. Grzywacz National Science Foundation Michigan State University

Half-lives

National Science Foundation Michigan State University

S. Nishimura et al., Phys. Rev. Lett. 106, 052502 (2012).

I. Morales et al., Phys. Rev. Lett. 113, 022702 (2014).

C. Mazzocchi et al., Phys. Rev. C 88, 064320 (2013).

Connection to Astrophysics: βxn

Courtesy M. Mumpower

National Science Foundation Michigan State University

βxn

Courtesy K. Miernik

National Science Foundation Michigan State University

βxn

Courtesy K. Miernik

National Science Foundation Michigan State University

K. Miernik *et al.*, Phys. Rev. Lett. 111, 132502 (2013)

β<mark>xn</mark>

National Science Foundation Michigan State University

K. Miernik *et al.*, Phys. Rev. Lett. 111, 132502 (2013)

Outcomes

Courtesy K. Miernik

National Science Foundation Michigan State University

K. Miernik *et al.*, Phys. Rev. Lett. 111, 132502 (2013) I.N. Borzov, Phhys. Rev. C, 67, 025802 (2003) P. Möller et al., Phys. Rev. C, 67, 055802 (2003)

Pandemonium

Courtesy K. Rykaczewski

National Science Foundation Michigan State University

K. Rykaczewski, Physics, 3, 94 (2010). J. Hardy *et al.*, Phys. Lett. B, 71 307 (1977)

Solution: Total Absorption Spectroscopy

S NSCL

National Science Foundation Michigan State University Don't worry Krzysztof...

Duke et al., Nucl. Phys. A, 151, 609 (1970). Bykov et al., IAN SSSR 44, 918 (1980) Greenwood et al., NIMA 314, 514 (1992) Rubio et al., JPG 31, S1477 (2005) Karny et al., NIMB, 126, 211 (1997)

Nuclear Structure from Beta Decay: Experiment

• Shape determination – ⁷⁶Sr

National Science Foundation Michigan State University

E. Nacher et al., Phys. Rev. Lett. 92, 232501 (2004).

Total Absorption Spectroscopy

Modular Total Absorption Spectroscopy

Courtesy K. Rykaczewski

National Science Foundation Michigan State University

Nuclear Reactors

- Following the shutdown of a nuclear reactor the core is still warm. Why?
 - A Heat from gravitational energy release following core collapse.
 - B Heat from thermal neutron induced fission.
 - C Heat from gamma ray emission.
 - D Heat from neutrino induced interactions.
 - E Heat from radioactive decay.

National Science Foundation Michigan State University

A. Algora *et al.*, Phys. Rev. Lett. 105, 202501 (2010).

Connections: Decay Heat

- Priority 1 decay heat: $^{139}Xe \rightarrow ^{139}Cs$
 - 5% cumulative yield in n_{th} +²³⁵U fission
 - 7th in direct production per ²³⁵U fission
- Average gamma-ray energy increase of 47%

Courtesy K. Rykaczewski

