CASL: Consortium for Advanced Simulation of Light Water Reactors A DOE Energy Innovation Hub Progress and Future Plans

Douglas B. Kothe, CASL Director

Presentation to the Oak Ridge National Laboratory Science Advisory Board July 17, 2014

Anatomy of a Nuclear Reactor Example: Westinghouse 4-Loop Pressurized Water Reactor (PWR)

reactor vessel and internals

Core

- 11.1' diameter x 12' high
- 193 fuel assemblies
- 107.7 tons of UO₂ (~3-5% U₂₃₅)
 Fuel Assemblies

• 17x17 pin lattice (14.3 mm pitch)

- 204 pins per assembly
 Fuel Pins
- ~300-400 pellets stacked within 12' high x 0.61 mm thick Zr-4 cladding tube
- Fuel Pellets
- 9.29 mm diameter x ~10.0 mm high

Fuel Temperatures

- 4140° F (max centerline)
- 657° F (max clad surface)

~51,000 fuel pins and over 16M fuel pellets in the core of a PWR!

Nuclear Energy Drivers and Payoffs for M&S technology

- Extend licenses of existing fleet (to 60 years and beyond)
 - Understand material degradation to reduce inspection & replacements
- Up-rate power of existing fleet (strive for another 5-10 GWe)
 - Address power-limiting operational & design basis accident scenarios
- Inform flexible nuclear power plant operations
 - Load follow maneuvering & coolant chemistry to enhance reliability
- Design and deploy accident tolerant fuel (integrity of cladding)
 - Concept refinement, test planning, assessment of safety margins
- Margin quantification, recovery, tradeoff
 - Plant parameters, fuel hardware, reload flexibility, regulatory changes
- Resolve advanced reactor design & regulatory challenges
 - Support Gen III+ reactors under construction (AP1000), refine SMR designs
- Fuel cycle cost savings
 - More economical core loadings and fuel designs
- Used fuel disposition
 - Inform spent fuel pools, interim storage, and repository decisions

CASL Targets the Multi-Scale Challenge of Predictively Simulating a Reactor Core

From full core to fuel assembly to fuel subassembly to fuel pin/pellet

CASL Background

• What is CASL doing?

- Create an advanced coupled multi-physics "virtual reactor" technology by adapting existing and developing new modeling and simulation (M&S) tools
- Effectively apply the virtual reactor technology to provide more understanding of safety margins while addressing selected operational and design challenges of operational light water reactors
- Why?
 - Improve the performance and energy output of existing nuclear reactors by focusing on important industry defined challenge problems
 - M&S technology has long been a mainstay in the nuclear industry (vendors, owner/operators), helping to inform consequential operational and safety decisions codes daily. Current nuclear industry M&S technology, though continuously improved, has failed to capitalize on the benefits that more precise predictive capability and fundamental understanding offer

• Why do this in the Hub R&D business model?

- Solution requires clear deliverables & products promoted by Hub R&D approach ("fierce sense of urgency")
- Public-private partnership essential for adaptation, application, and "useful and usable" deployment of advanced M&S technologies under development at DOE national labs and universities to nuclear enterprise

• What is working?

Several elements have proven effective: partnerships, industry pull, technology deployment, clear deliverables and plans, effective and agile project management, 5-year time horizon, S&T guidance/review

Strong Dependency on Modeling and Simulation

Need to assure nuclear safety but limited by inability to perform full-scale experimental mockups due to cost, safety & feasibility [1% power derating translates to \$(5-10)M annual loss of revenue for 1 GWe unit]

Need to minimize economic uncertainty associated with new product introduction (e.g. fuel) by employing precise predictions [1% error in core reactivity has \$4M annual fuel cycle cost impact for 1 GWe unit]

Mission is to provide leading-edge modeling and simulation capabilities to improve the performance of currently operating light water reactors

	Vision	Predict, with confidence, the performance and assured safety of nuclear reactors, through comprehensive, science-based M&S technology deployed and applied broadly by the U.S. nuclear energy industry	Westinghouse Westinghouse
		 Develop and effectively apply modern virtual reactor technology 	Scope
	Goals	 Provide more understanding of safety margins while addressing operational and design challenges 	Address, through new insights afforded by advanced M&S technology, key
		 Engage the nuclear energy community through M&S 	nuclear energy industry challenges
		 Deploy new partnership and collaboration paradigms 	 ✓ furthering power uprates
	Strategies	Virtual Environment for Reactor Applications (VERA)	 higher fuel burnup
		Industry Challenge Problems	 lifetime extension
		Technology Delivery	while providing higher confidence in enhanced nuclear safety
		Iargeted, Enabling R&D	□ Focus on performance of pressurized
			water reactor core, vessel, and in-
		Collaboration and Ideation	vessel components to provide greatest

CASL Components

US team with a remarkable set of assets – Address tough industry challenges that matter – Urgent and compelling plan Collaborate creatively - Target and foster innovation - Deliver industry solutions with predictive simulation

CASL's Charter

Nuclear Energy

U.S. DEPARTMENT OF

impact within 5 years

Elements of CASL's Approach That are Proving Effective With continuous improvement drawing on feedback from customers/clients/users

✓ Clear deliverables that solve industry issues and are driven by a well-defined yet dynamic plan

• Commit to a hierarchical milestone plan with tangible deliverables; define products integrated across capabilities

A strategy of delivering prototype products early and often

 Early deployment of Hub's technology (VERA) into industrial environment for rapid and enhanced testing, use, and ultimate adoption to support real-world LWR applications

✓ Defined customers and users, with "industry pull" ensured by an industry council

 Charter and engage Industry Council (IC) for early, continuous, and frequent interface and engagement of end-users and technology providers. Use the IC for critical review of CASL plans and products – want products to be "ours"

✓ A true private-public partnership in management, leadership, and execution

 Engage the nuclear industry broadly (vendors, owners/operators, R&D) and at all levels of execution. Involve the best and brightest crucial for success & credibility using virtual collaboration technologies for daily interactions

✓ A 5-year horizon for completion and funding with a renewal option for second 5 years

• 5-year period a must to attract and retain community leaders yet upon execution forces specific paths and decisions

✓ Led by one institution with resource allocation authority and responsibility

- Not easy nor a guarantee of success but enables agility while assignment of clear authority and responsibility
- DOE empowers lead institution and Hub leadership ("light federal touch") as long as execution and performance warrants
- ✓ BOD providing oversight and advice on management, plan, and science & technology (S&T) strategy
 - Not a useful body unless Hub leadership knows how to effectively utilize it; guidance of CASL BOD has been immeasurable
- Independent councils to review and advise on quality and relevance of S&T
 - Science Council independent assessment of whether the scientific work planned and executed is of high quality and supports attaining CASL goals – motivates CASL leadership to more directly address problems with needed decisions

CASL Challenge Problems

Key safety-relevant reactor phenomena that limit performance

VERA: Virtual Environment for Reactor Applications CASL's evolving virtual reactor for in-vessel LWR phenomena

CASL Innovations

Advanced Modeling Applications

Physics Integration

Framework for integration of multiple codes with different physics, addressing control, and solution methodology & transfer

MPACT

INSILICO

Neutronics

Radiation Transport Methods

Parallel deterministic (SP_n, S_n & MOC) and stochastic (MC) models capable of full core analysis with pin-homogenized or pin-resolved detail

CASL Innovations

Validation & Uncertainty Quantification

enhanced thermodynamics and transport treatments informed by micro-scale models

> 630.0 620.0

> > 616.4

MOOSE

Temperature (K) 639.7

Burnup = 30.3 MWd/kgU

Full 3D thermo-mechanical finite element model informed by LWR micro- and meso-scale models

displacements magnified 25x

175

150

Reactor Core Physics Benchmarking Outstanding operational reactor results with the new and evolving neutronics capability

Purpose

- Document performance for CASL Core Physics **Progression Problems 1-5**
- Benchmark results vs. measured Watts Bar Unit 1 Cycle 1 zero power physics testing data
- Document independent user experience and computational resources required

Summary Results

Prob. #	Typical Eigenvalue Difference (pcm)	Typical Pin Power RMS (%)	Number Compute Cores	Typical Runtime	
1	-211		8	~3 secs	
2	-126	0.12%	8	~1 min	
3	-116	0.27%	464	~2 min	
4	-113	0.95%	464	~33 min	
5	-88	0.74%	2784	~75 min	

Watts Bar Unit 1 Initial Startup Results •

Item	Measured Difference	CE KENO-VI Difference
Criticality [†]	-225 ± 57 pcm	-96 ± 13 pcm
Control Rod Worths [†]	3.3 ± 1.5%	0.8 ± 0.3%
Differential Boron Worth	0.61 pcm/ppm	-0.05 pcm/ppm
Isothermal Temperature Coefficient	-1.55 pcm/F	-0.54 pcm/F

Conclusions and Feedback

- Good accuracy and stability with reasonable runtimes
- Small radial and axial power tilts for whole core models
- Needs IFBA treatment (5x slower)
- Needs control rod tip treatment (<80 pcm)
- Needs thermal expansion & rotational symmetry
- Needs faster runtime for T/H coupling

VERA Analysis of Watts Bar 1 Hot Full Power

Purpose

- First large-scale coupled multi-physics model of operating PWR reactor using Components of CASL's Virtual Environment for Reactor Applications (VERA)
- Features resolved are based on the dimensions and state conditions of Watts Bar Unit 1 Cycle 1: geometry for fuel, burnable absorbers, spacer grids, nozzles, and core baffle

Execution

- Common input used to drive all physics codes
- Multigroup neutron cross sections calculated as function of temperature and density (SCALE/XSPROC)
- SPN neutron transport used to calculate power distribution (DENOVO)
- Subchannel thermal-hydraulics in coolant (COBRA-TF)
- Rod-by-Rod heat conduction in fuel rods (COBRA-TF)
- Simulation ran in 14.5 hours on Titan using 18,769 cores over 1M unique material (fuel/coolant/internals) regions resolved

Next Steps

- Add fuel depletion and core shuffling
- Compare results to plant measured data

Remarkable resolution of physics and geometry

New VERA Continuous-Energy Monte Carlo Capability (Shift) – Quarter-Core Zero Power Physics Test

Goals

- Compare fidelity and performance of Shift against Keno, $SP_{\text{N}},$ and S_{N} (Denovo)
- Generate high-fidelity neutronics solution for code comparison of solutions for predicting reactor startup and physics testing

Execution

- Proposal submitted to OLCF as part of Titan Early Science program
- Awarded 60 million core-hours on Titan (worth >\$2M)
- AP1000 model created and results generated for reactor criticality, rod worth, and reactivity coefficients
- Identical VERA Input models used for Shift, SP_N, and S_N
 - dramatically simpler than KENO-VI input model

Results

- Some of the largest Monte Carlo calculations ever performed (1 trillion particles) have been completed
 - runs use 230,000 cores of Titan or more
- Excellent agreement with KENO-VI
- Extremely fine-mesh S_N calculations, which leverage Titan's GPU accelerators, are under way

CASL Innovations CASL vs. Industry Core Simulators

Physics Model	Industry Practice	CASL (VERA-CS)			
Neutron Transport	3-D diffusion (core)2 energy groups (core)2-D transport on single assy	3-D transport 23+ energy groups			
Power Distribution	nodal average with pin-power reconstruction methods	explicit pin-by-pin			
Thermal-Hydraulics	1-D assembly-averaged	subchannel (w/crossflow)			
Fuel Temperatures	nodal average	pin-by-pin 2-D or 3-D			
Xenon/Samarium	nodal average w/correction	pin-by-pin			
Depletion	infinite-medium cross sections quadratic burnup correction history corrections spectral corrections reconstructed pin exposures	pin-by-pin with actual core conditions			
Reflector Models	1-D cross section models	actual 3-D geometry			
Target Platforms	workstation (single-core)	1,000 – 300,000 cores			

CASL current and planned capabilities will leapfrog calibrated industry core simulators that use lumped homogenization and correlation-based closures

Industry Role and Impact in CASL

Industry Council: Assure that CASL solutions are "used and useful" by industry and that CASL provides effective leadership advancing the M&S state-of-the-art.

Industry Council Objectives and Strategies

- Early, continuous, and frequent interface and engagement of end-users and technology providers
- Critical review of CASL plans and products
- Deployment and applications of periodic VERA releases
- Identification of strategic collaborations between industry and CASL for access to data and technical information, testing and evaluation, regulatory interface, or targeted RD&D

Outcomes and Impact

- Industrial technology-providers and end-users benefit by influencing VERA and its development process to be compatible with expected applications
- They also prepare their business and technical processes to make early use of CASL products

Industry Council Members

CASL Core Industry Partners Represent 3 Pillars of Nuclear Industry

- EPRI: R&D arm of industry as driven by nearterm utility (owner/operator) needs
 - Power uprates, license extensions, new fuel designs
- TVA: owner/operator of 6 nuclear reactors also brings operational reactor data for validation – Address power-limiting operating scenarios
- Westinghouse: *vendor* designer and seller of commercial fuel and integrated reactor designs
 - Enhanced insights in critical reactor margins

CASL Technology Deployment Test Stands to Beta Releases to Broad Releases

- CASL is committed to ensuring its products are deployed to the broader nuclear industry
- Test Stands: Early deployment to industry for rapid and enhanced testing, use, and ultimate adoption of VERA to support real-world LWR applications
 - Westinghouse (Mar 2013): Use VERA core simulator to analyze AP1000 first core startup
 - EPRI (Nov 2013): new EPRI computing capabilities will be utilized to test VERA fuel performance (Peregrine) applications
 - TVA (Mar 2014): test VERA CFD capability (Hydra-TH) on lower plenum flow anomaly observed in operational reactors

First CASL Test Stand Highlighted in Nuclear Engineering International Magazine

- Highlights Simulation of AP1000[®] First Core by Westinghouse (May 2014)
 Control Rod Worth
- Strong demonstration of deployment of CASL tools and use by Westinghouse
- NEI Magazine has broad international circulation

Start-up Boron and Reactivity Coefficients

	KENO	VERA
Critical Boron (ppm)	1314	1311
Isothermal Temperature Coefficient (pcm/F)	-2.7	-3.2
Doppler Temperature Coefficient	-1.6	-1.7
Moderator Temp. Coeff.	-1.1	-1.5

CASL technology deployed at the industry proves beneficial for challenging simulation scenarios

								AS			
	AO Bank	\P1 V	10(MD Banl) k	Co M1 Bank	re	KE MB Bank	NC	۸ C	Λο	del
ERA- ENO (%) 0.5			ide dide								
2.1											
1.1											
0.0											
0.6											
).4											
0.3											
0.0											
0.8	0	64	MD	e2	M1	en.	MB				
0.0	D		MA	35 135	AO	52 [66]	S4				
0.4		S3		S1		M2					
	11	4 <u>8</u> 2	AO		MC						
29		S2		M2					/		
	B		54							,	
									-		

VERA-

KENO

(pcm)

-1

-5

-2

0

-4

3

-4

0

-9

0

-3

KENO

258

217

188

234

651

887

1635

1079

1096

1124

580

MA

MB

MC

MD

M1

M2

AO

S1

S2 S3

S4

Consortium for Advanced Signalation of LWBs

CASL Test Stand at Westinghouse Highlighted in Nuclear Engineering International Magazine Recipient of IDC HPC Innovation Excellence Award

Simulation of AP1000 first core with VERA

CASL Proposed Phase 2 Scope: 2015 – 2019

And of second states and second se

Rs

CASL Status and Looking Forward

✓ Year 1: Build the foundation

- ✓ Year 2: Advance the science basis of the M&S technology components
 - Guided by challenge problem requirements baselined against industry capabilities
- ✓ Year 3: Assess, refine, integrate, and beta test the M&S technology components within the multi-physics Virtual Reactor er processory pocume
 - Perform initial verification and validation (V&V), sensitivity analys uncertainty quantification (UQ) analyses
- ✓ Year 4: Harden for robustness & efficiency and deploy coupled multi-physics Virtual Reactor technology for br assessment and continuous improvement
 - Prepare for possible 5-year renewal that leverages development
- Year 5: Continue maturation of the multi-physics Virtua technology thru increased breadth and depth of testing application offered by a general release
 - Self-sustaining technology deployment (release/support) and evolution plan in place

Questions? www.casl.gov or info@casl.gov

