Nuclear Reactions – Experiment II

Calem R. Hoffman Physics Division, Argonne National Laboratory

Exotic Beam Summer School – 2014 ORNL

Physics Division

PRL 108, 022501 (2012)

PHYSICAL REVIEW LETTERS

Test of Sum Rules in Nucleon Transfer Reactions

J. P. Schiffer,^{1,*} C. R. Hoffman,¹ B. P. Kay,^{1,†} J. A. Clark,¹ C. M. Deibel,^{1,2,‡} S. J. Freeman,³ A. M. Howard,^{3,§}

A. J. Mitchell,³ P. D. Parker,⁴ D. K. Sharp,³ and J. S. Thomas³

 ¹Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
 ²Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, Michigan 48824, USA
 ³Schuster Laboratory, University of Manchester, Manchester M13 9PL, United Kingdom
 ⁴A. W. Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut 06520, USA (Received 24 September 2011; published 10 January 2012)

PHYSICAL REVIEW C 87, 034306 (2013)

Valence nucleon populations in the Ni isotopes

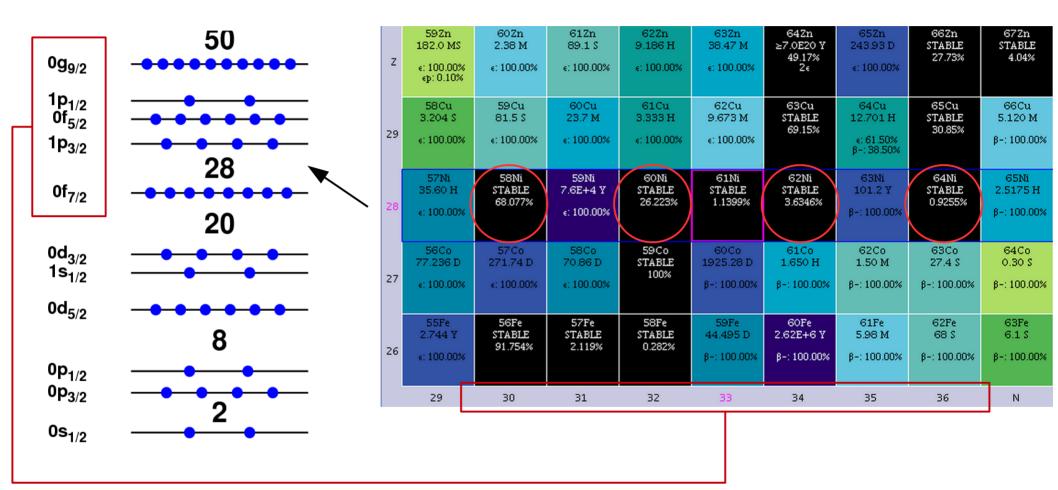
J. P. Schiffer,^{1,*} C. R. Hoffman,¹ B. P. Kay,^{1,†} J. A. Clark,¹ C. M. Deibel,^{1,2,‡} S. J. Freeman,³ M. Honma,⁴ A. M. Howard,^{3,§} A. J. Mitchell,^{3,¶} T. Otsuka,⁵ P. D. Parker,⁶ D. K. Sharp,³ and J. S. Thomas³ ¹Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
²Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, Michigan 48824, USA ³School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom ⁴Center for Mathematical Science, University of Aizu, Aizu-Wakamatsu, Fukushima 965-8580, Japan ⁵Department of Physics and Center for Nuclear Study, University of Tokyo, Hongo, Tokyo 113-0033, Japan and RIKEN, Hirosawa, Wako-shi, Saitama 351-0198, Japan ⁶A. W. Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut 06520, USA (Received 14 November 2012; revised manuscript received 28 January 2013; published 6 March 2013)

Application of transfer reactions

• Goal: Test the Macfarlane & French transfer sum rules

$$N \equiv \frac{1}{(2j+1)} [\Sigma(2j+1)C^2 S_{\text{adding}} + \Sigma C^2 S_{\text{removing}}]$$

- Measure reactions on 4 stable Ni isotopes (58,60,62,64Ni)
- Measure cross sections and check orbital angular momentum assignments
- Extract reduced cross sections
- Normalize to orbital degeneracies
- Investigate robustness of results
 - Deduce orbital occupancies and single-particle energies



How to best test the sum rules?

- Obtain systematic and clear data under near identical experimental conditions
 - Large number of stable isotopes w/ robust targets
 - Well known spin-parity assignments
- Choose reactions best matched momentum for the transfer
 - Requisite particles and beam energies
- Measure large fraction of single-particle strength
 - Sum rules assume full strength identified
- Consistent calculations used for reduction cross sections (Spectroscopic factors)
- Is there are common normalization factor for "all" nuclei?

Active Neutron Orbitals to be Probed

Question

• Which of the following reactions is best suited to study the single-neutron states in these Ni isotopes

A) (6Li,d)

B) (d,p)

C) (d,d')

D) (³He,t)

E) (14C,10C)

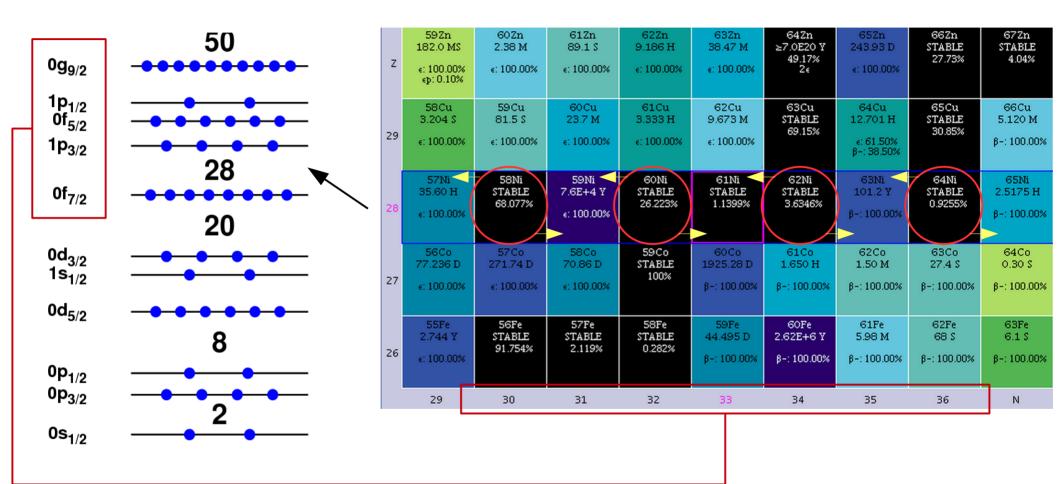
Question

• Which of the following reactions is best suited to study the single-neutron states in these Ni isotopes

A) (6Li,d)

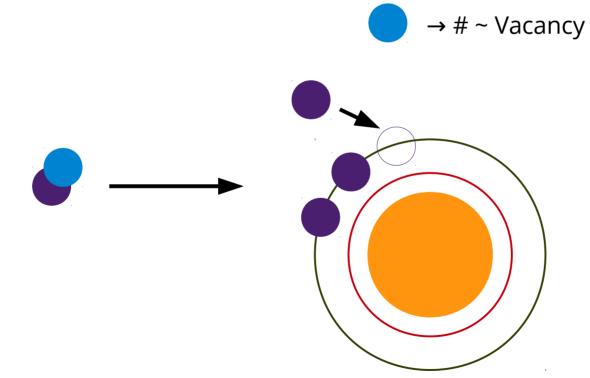
B) (d,p)

C) (d,d')

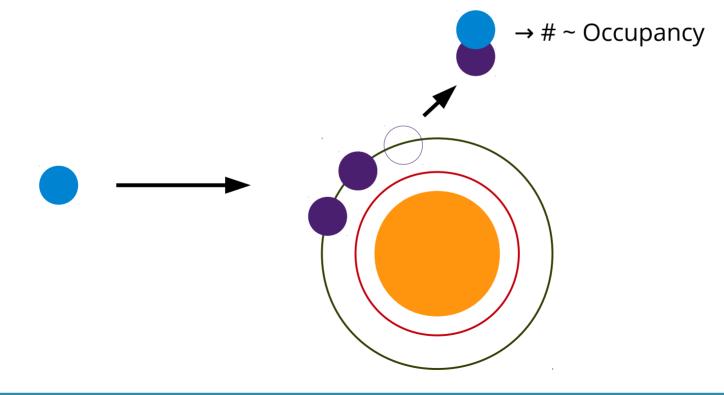

D) (³He,t)

E) (14C,10C)

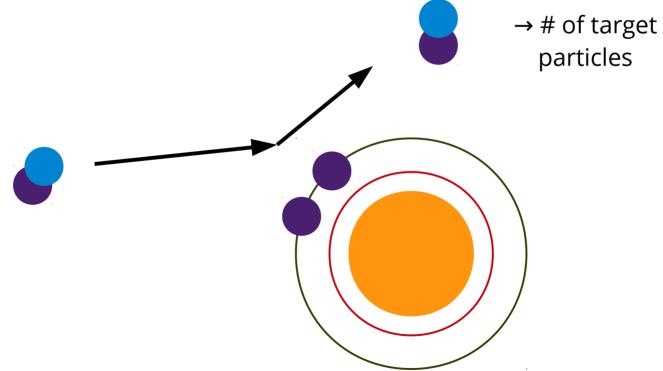
Answer: B) single-neutron adding and removing reactions



Active Neutron Orbitals to be Probed



- Single-neutron adding probes vacancies (# of holes)
- Single-neutron removal probes occupancies (# of particles)
- Low energy elastic scattering provides reliable absolute cross sections



- Single-neutron adding probes vacancies (# of holes)
- Single-neutron removal probes occupancies (# of particles)
- Low energy elastic scattering provides reliable absolute cross sections

- Single-neutron adding probes vacancies (# of holes)
- Single-neutron removal probes occupancies (# of particles)
- Low energy elastic scattering provides reliable absolute cross sections

Question

• Which reaction is best matched for *I* = 4 neutron transfer on ⁶⁴Ni?

A) (d,p) Q = +3.9 MeV

B) (³He,t) Q = -1.7 MeV

C) (4He,3He) Q = -14.5 MeV

D) (4He,t) Q = -12.4 MeV

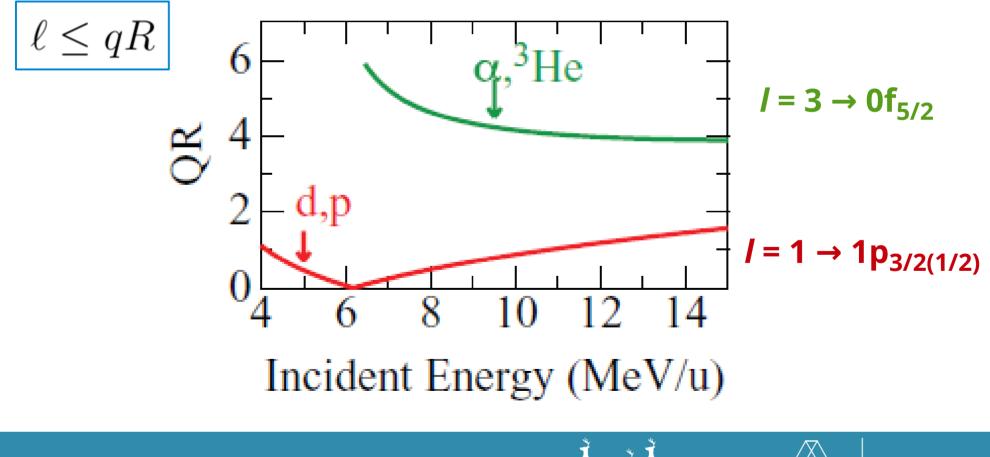
Question

 Which reaction is best matched for *I* = 4 neutron transfer on ⁶⁴Ni?

A) (d,p) Q = +3.9 MeV

B) (³He,t) Q = -1.7 MeV

C) (4He,3He) Q = -14.5 MeV


D) (4He,t) Q = -12.4 MeV

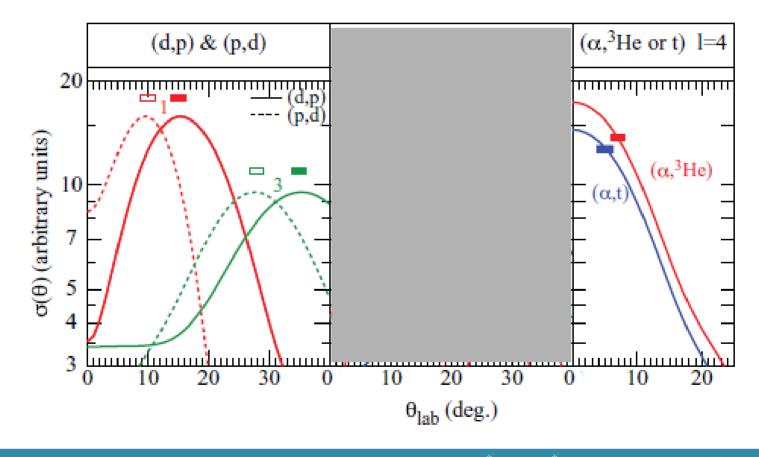
Answer: C) (4 He, 3 He) Q = -14.5 MeV

Momentum matching conditions

• Strong Q value dependence, along with beam energy and radial dependence

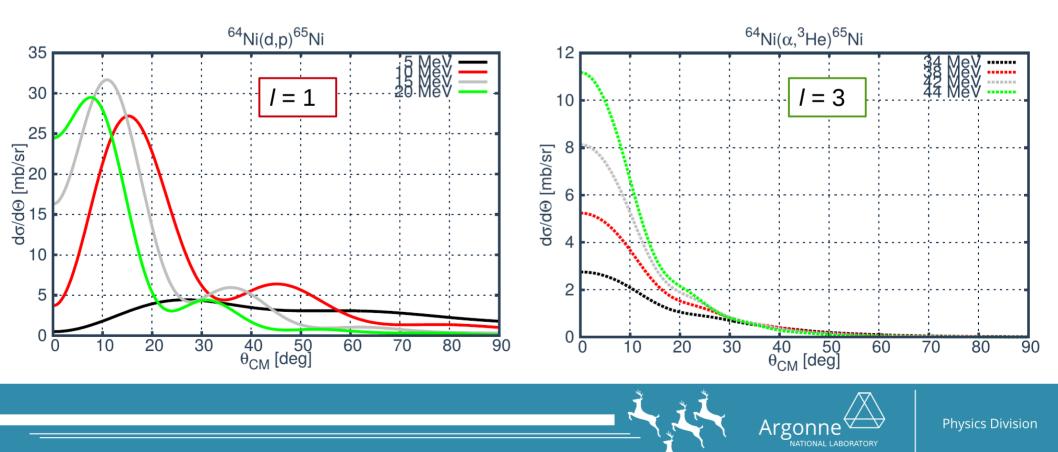
Estimated Cross Sections & Distributions

- Calculated differential cross sections from DWBA with global parameter sets [e.g., An & Cai, PRC 73 (2006), Becchetti & Greenlees PR (1969)]
- Angle dependencies and momentum matching


 64 Ni(d,p) E_d = 10 MeV 58 Ni(α , 3 He) E_{α} = 38 MeV $=\frac{1}{3}$ = [ls/qm] ⊕p/op 10 6 5 4 3 [ls/qш] Θρ/ορ $\begin{array}{cc} 40 & 50 \\ \theta_{CM} \, [deg] \end{array}$ $\begin{array}{cc} 40 & 50 \\ \theta_{CM} \text{ [deg]} \end{array}$

 $I = 1 \rightarrow 1p_{3/2(1/2)}$ $I = 3 \rightarrow 0f_{5/2}$ $I = 4 \rightarrow 0g_{7/2}$

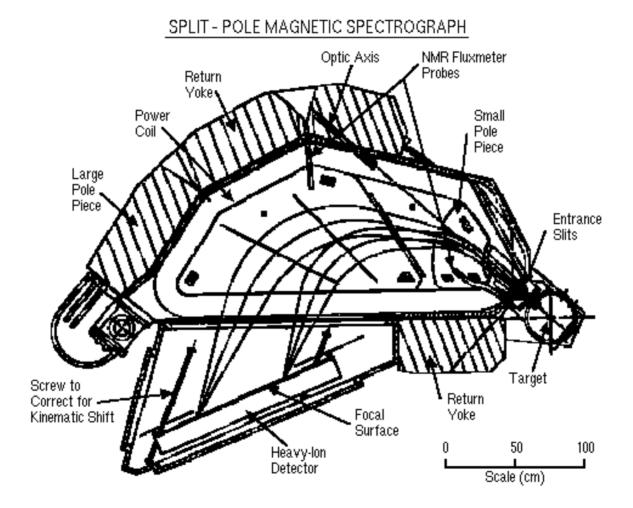
Estimated Cross Sections & Distributions


- Calculated differential cross sections from DWBA with global parameter sets [e.g., An & Cai, PRC 73 (2006), Becchetti & Greenlees PR (1969)]
- Angle dependencies and momentum matching

Estimated Cross Sections & Distributions

- Calculated differential cross sections from DWBA with global parameter sets [e.g., An & Cai, PRC 73 (2006), Becchetti & Greenlees PR (1969)]
- Cross section and angular distribution sensitivity to incoming beam energy

Summary of Reaction Conditions


Reaction	Beam energy (MeV)	θ_{LAB} (deg)	FWHM (keV)
(d,p)	10	15	33
(20	35	40
(p,d)	28	10 25	48
$(\alpha, {}^{3}\text{He})$ $({}^{3}\text{He}, \alpha)$	38	7	50
(³ He,α)	25	5	75

- Measure each reaction on each target
 - x4 targets, x4 reactions, x6 angles \rightarrow a lot of measurements
 - Completed in ~5 days of beam time

Experimental setup and data

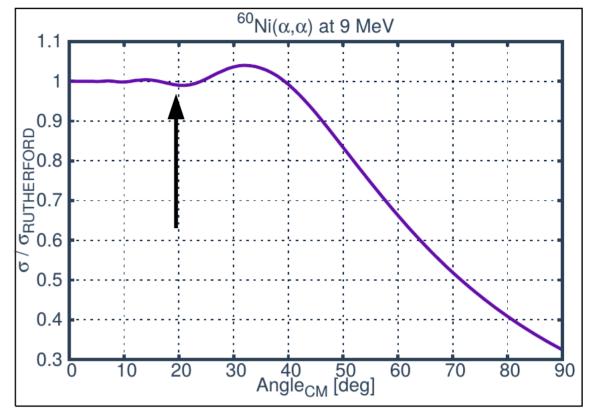
• Yale ESTU tandem and Enge split-pole spectrograph

Dimensions of the Split-Pole Spectrograph are shown in the drawing where trajectories of particles with two different $B\rho's$ are indicated

Target Thicknesses and Cross Sections

α scattering in Rutherford regime

$$\frac{d\sigma}{d\Omega_R}(\theta_R) = \frac{Y_R}{n_R \cdot t_R \cdot \Omega_R}$$


 $Y_R \rightarrow \#$ of observed particles

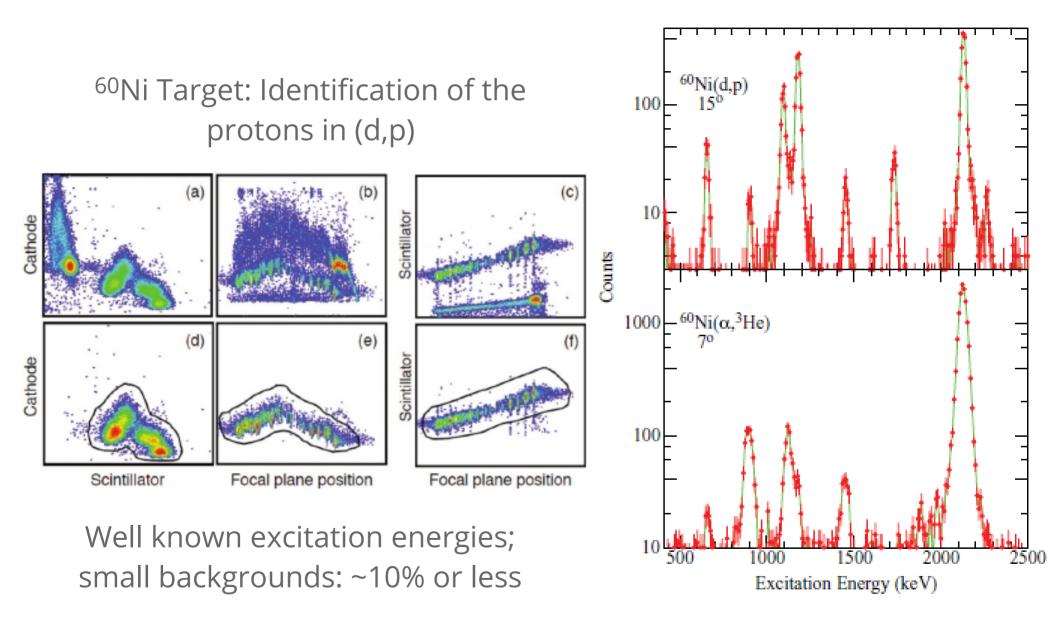
 $n_R \rightarrow \#$ of beam particles

 $t_R \rightarrow \#$ target particles

 $\Omega_{\mathsf{R}} \rightarrow \mathsf{Detector} \mathsf{ solid} \mathsf{ angle}$

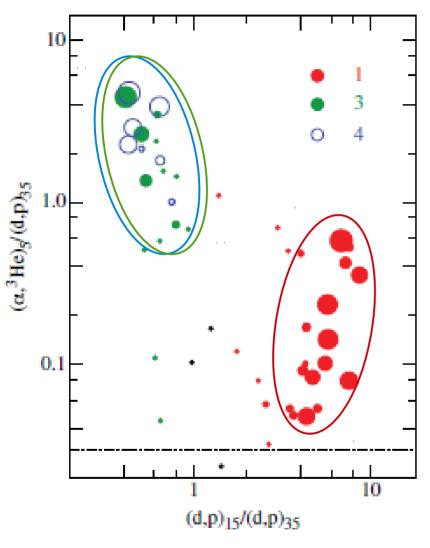
$$t_R = \frac{Y_R}{n_R \cdot \frac{d\sigma}{d\Omega_R}(\theta_R) \cdot \Omega_R}$$

Nucleus	Thickness (μ g/cm ²)	Purity (%)	
⁵⁸ Ni	211	99.6	
⁶⁰ Ni	204	99.7	
⁶² Ni	219	96.5	
⁶⁴ Ni	160	91.0	

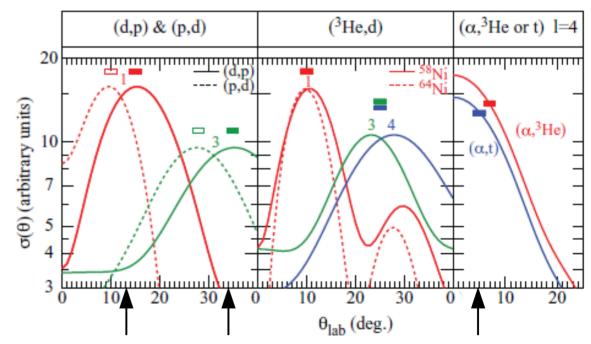


Raw counts to cross sections

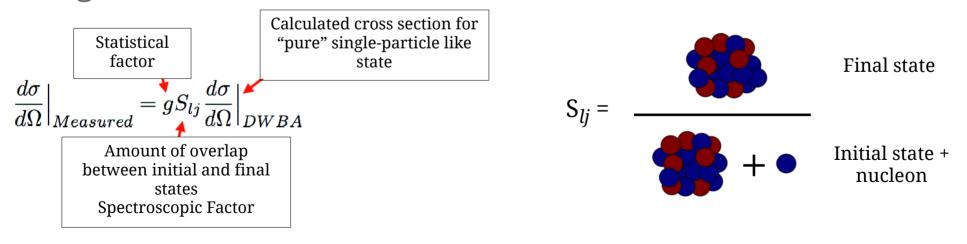
- Key to have reliable absolute cross sections with small systematic and statistical uncertainties
- Same target position and aperture as Rutherford scattering data

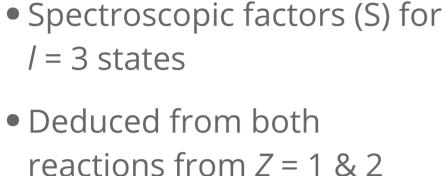


Examples of data taken

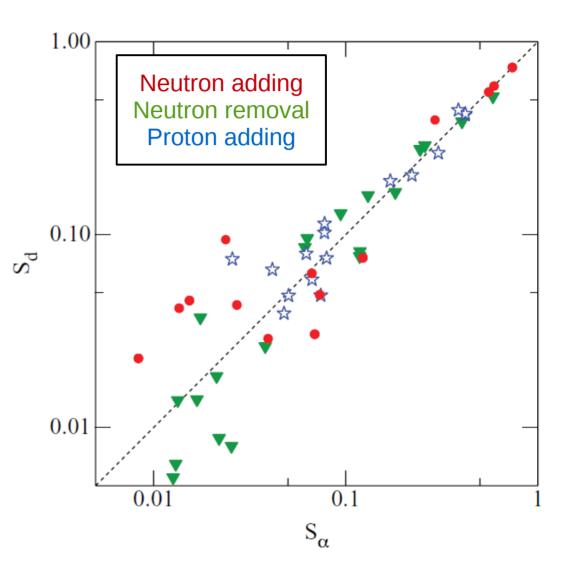


Confirmation of / Assignments

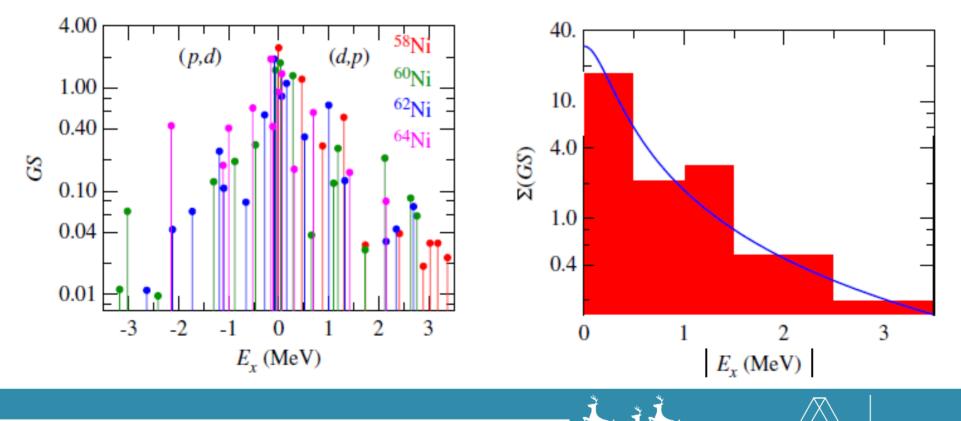

- Did not measure full ang. dist.
- Check though by looking at ratios of measure cross sections
- Dot size proportional to cross section

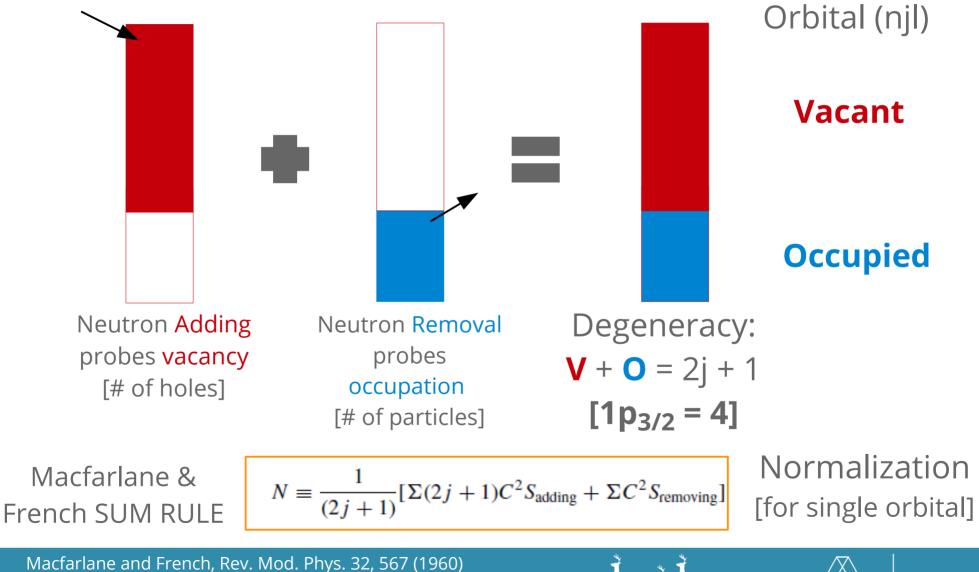

Reduced cross sections: Relative Spectroscopic Factors

- Normalize the calculated cross sections to measured cross sections
 - Distorted wave Born approximation (DWBA) calculations (~10% variations between parameter sets)
- Global potentials: Parametrized to data as function of Beam E, Target Z, & A

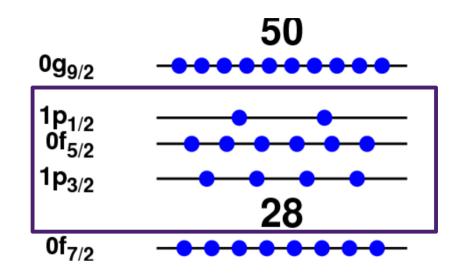


Consistency of Reduced cross sections


- reactions from Z = 1 & .projectiles
- e.g., (d,p) & (4He,3He)
- Small deviations for states with maximum strength (S > ~0.1)


Was a majority of the strength measured?

- Strength (GS) \rightarrow (2*j*+1)C²S for neutron adding, C²S for removal
- $E_x \rightarrow$ Energy of (/ = 1) state relative to binding of target ground state
- Fits suggest < 3-5% of strength lies above $E_x = 3.5$ MeV


Extract normalization value using sum rules for each target

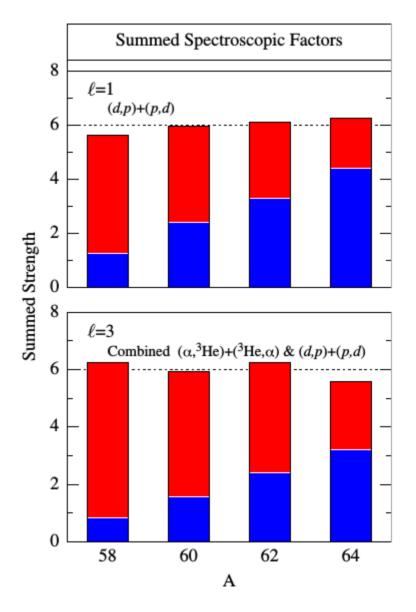
Physics Division

Normalize the S values for each Ni isotope

- Three different ways to normalize
 - / = 1 from (d,p)/(p,d)
 - / = 3 from (d,p)/(p,d)
 - / = 3 from (4HE,3He)/(3He,4He)

Macfarlane & French SUM RULE

$$N \equiv \frac{1}{(2j+1)} [\Sigma(2j+1)C^2 S_{\text{adding}} + \Sigma C^2 S_{\text{removing}}]$$



- Sum $1p_{3/2} + 1p_{1/2} = 6 \rightarrow / = 1$
- Degeneracy $0f_{5/2} = 6 \rightarrow I = 3$

The Macfarlane and French SUM RULES are shown to be robust!!

Neutron adding strength Neutron removal strength

Nucleus	$N_{\ell=1}$	$N_{\ell=3}$	$N_{\ell=3,\alpha}$
⁵⁸ Ni	0.527	0.528	0.518
⁶⁰ Ni	0.548	0.503	0.464
⁶² Ni	0.558	0.554	0.471
⁶⁴ Ni	0.566	0.480	0.433
Mean	0.550(15)	0.517(28)	0.471(30)

Nucleus	$N_{\ell=1}$	$N_{\ell=3}$	$N_{\ell=3,\alpha}$
⁵⁸ Ni	0.527	0.528	0.518
⁶⁰ Ni	0.548	0.503	0.464
⁶² Ni	0.558	0.554	0.471
⁶⁴ Ni	0.566	0.480	0.433
Mean	0.550(15)	0.517(28)	0.471(30)

Similar normalizations for each isotope!! Independent of orbital!! < 10 % deviation

Nucleus	$N_{\ell=1}$	$N_{\ell=3}$	$N_{\ell=3,\alpha}$
⁵⁸ Ni	0.527	0.528	0.518
⁶⁰ Ni	0.548	0.503	0.464
⁶² Ni	0.558	0.554	0.471
⁶⁴ Ni	0.566	0.480	0.433
Mean	0.550(15)	0.517(28)	0.471(30)

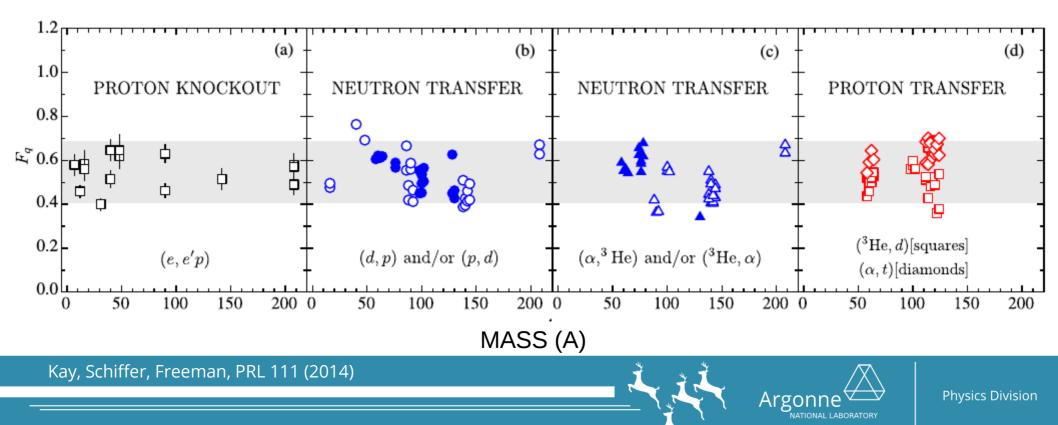
Good agreement for the normalizations across the different methods < 20% deviation

The Macfarlane and French SUM RULES are shown to be robust!!

Nucleus	$N_{\ell=1}$	$N_{\ell=3}$	$N_{\ell=3,\alpha}$
⁵⁸ Ni	0.527	0.528	0.518
⁶⁰ Ni	0.548	0.503	0.464
⁶² Ni	0.558	0.554	0.471
⁶⁴ Ni	0.566	0.480	0.433
Mean	0.550(15)	0.517(28)	0.471(30

Proton	Bound state	Normalization
[13], fixed	[15]	0.492 ± 0.020
[13], fixed	[15]	0.646 ± 0.041
[13]	[15]	0.568 ± 0.037
[13]	[15]	0.550 ± 0.015
[19]	[15]	0.572 ± 0.051
[13]	[13]	0.475 ± 0.018
[14]	[14]	0.561 ± 0.022
	[13], fixed [13], fixed [13] [13] [19] [13]	[13], fixed [15] [13], fixed [15] [13] [15] [13] [15] [19] [15] [13] [13]

Different optical parameters for (d,p)(p,d) / = 1 still shows consistency

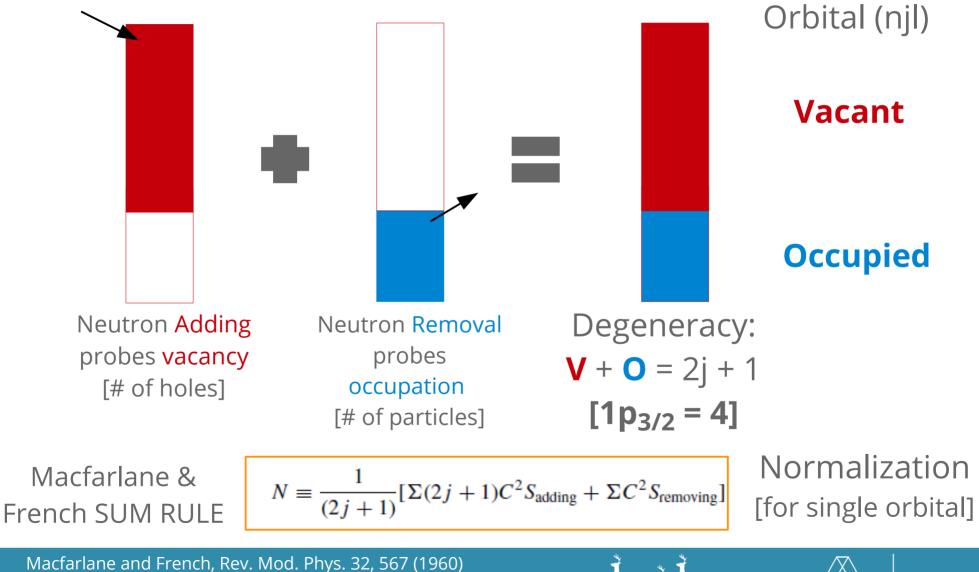


Global Consistency of the Normalization

Reaction, ℓ transfer	Number of determinations	F_q	rms spread
$(e,e'p)$, all ℓ	16	0.55	0.07
$(d,p), (p,d), \ell = 0-2$	40	0.53	0.09
$(d,p), (p,d), \ell = 0-3$	46	0.53	0.10
$(\alpha, {}^{3}\text{He}), ({}^{3}\text{He}, \alpha), \ell = 4-7$	26	0.50	0.09
$(\alpha, {}^{3}\text{He}), ({}^{3}\text{He}, \alpha), \ell = 3-7$	34	0.52	0.09
$({}^{3}\text{He},d), \ell = 0-2$	18	0.54	0.10
$({}^{3}\text{He},d), \ell = 0-4$	26	0.54	0.09
$(\alpha, t), \ell = 4-5$	14	0.64	0.04
$(\alpha, t), \ \ell = 3-5$	18	0.64	0.04
All transfer data ^a	124	0.55	0.10

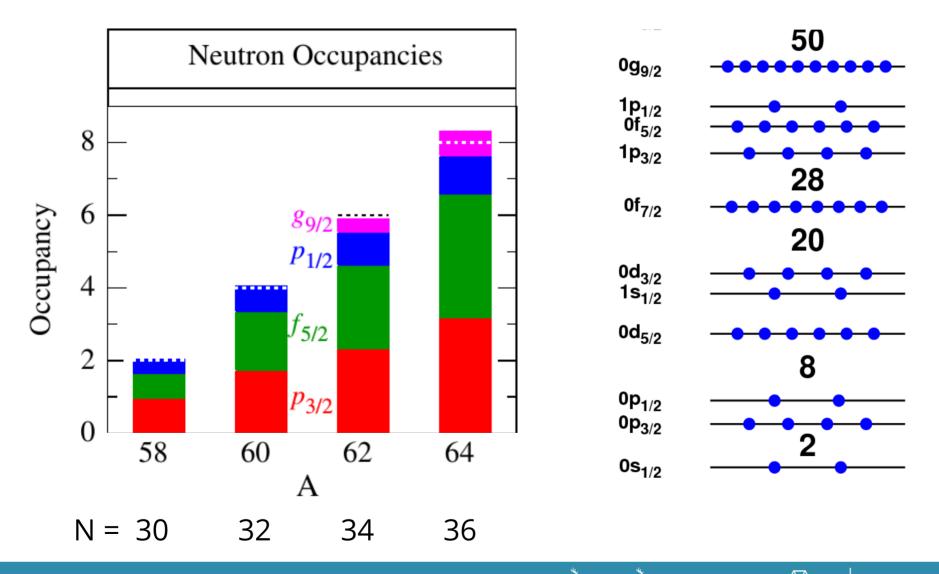
$$F_q \equiv \frac{1}{(2j+1)} \left[\Sigma \left(\frac{\sigma_{\exp}}{\sigma_{\rm DW}} \right)_j^{\rm add} + \Sigma \left(\frac{\sigma_{\exp}}{\sigma_{\rm DW}} \right)_j^{\rm rem} \right], \quad \rightarrow \text{ same as N}$$

^aRows 3, 5, 7, and 9.

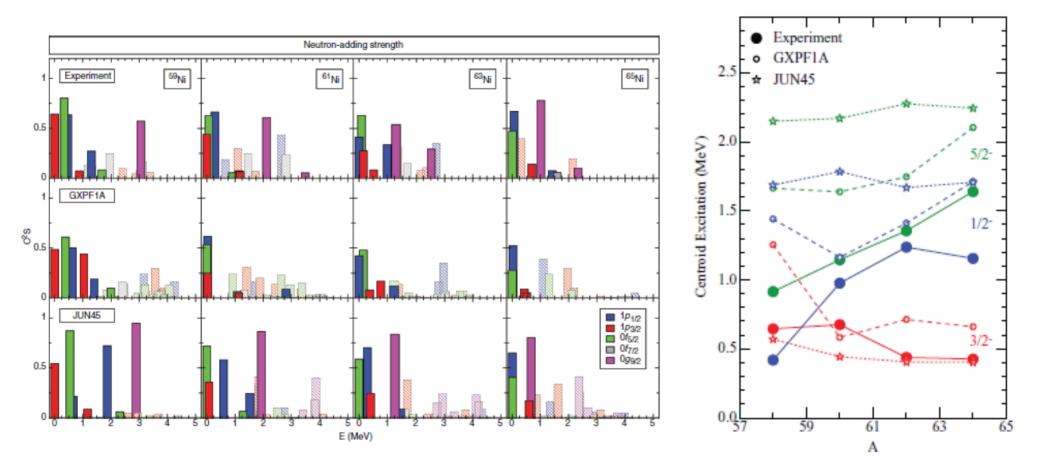


Success of Sum Rules Procedures

- Systematic test of the Macfarlane and French sum rules was carried out on the stable even-even Ni isotopes
- Care was taken in the experiment to extract reliable and consistent absolute cross sections
- Common procedures were used to reduce the cross sections to spectroscopic factors (reduced cross sections)
- Consistent values for the normalization value (N) using the sum rules was obtained for each of the different targets
- Value of the normalization is common across all nuclei (N ~ 0.4 – 0.7) using consistent optical model parameters

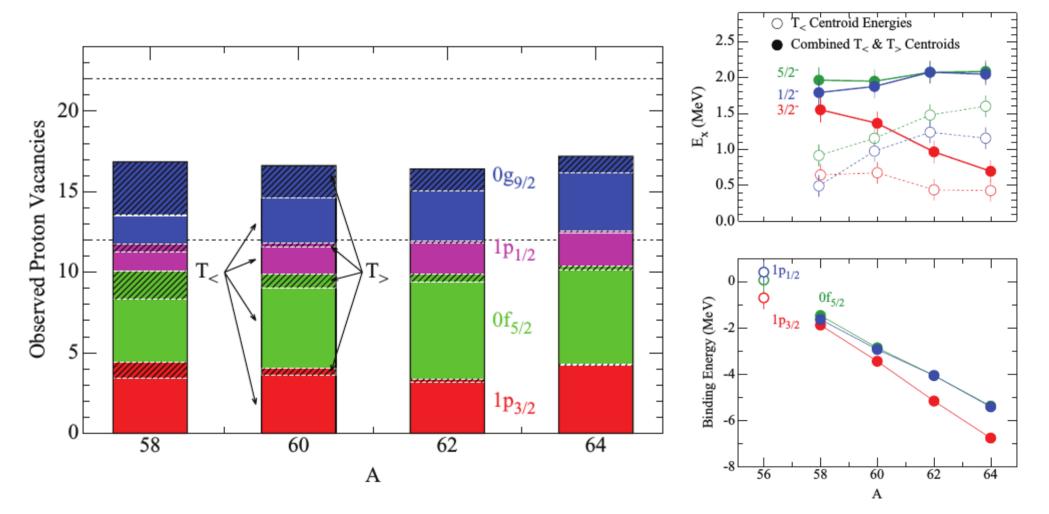

Extract normalization value using sum rules for each target

Physics Division


Determination of Neutron Occupancies

Sum only the neutron removal strength (OR 2j+1 – adding strength)

Applications: Single-Neutron Strength and Single-Neutron Energy Centroids



Protons Occupancies and Centroids

 Only measured proton adding reactions → additional assumptions made e.g., robust Z = 28 shell closure

Question

- Who are the defending National Champions in College Football? (Hint: Their quarterback also won the Heisman Trophy!!)
- A) Michigan State University Spartans
- B) University of Connecticut Huskies
- C) Florida State University Seminoles
- D) A school from the SEC
- E) If football = soccer

C) Florida State University Seminoles!!

Physics Division

Thank You!

Email: crhoffman@anl.gov

Physics Division