

X-ray Bursts Nuclear Astrophysics:

Catherine M. Deibel Louisiana State University

homogeneous Big Bang

Solar Abundances: We are all Stardust! . . . but how did we get here?

Big Bang Nuclei

Relative Solar Abundances

How did the elements form (nucleosynthesis)?
 How to different stars evolve?

Stellar Life Cycle

Low/average mass cycle

star forming region

High mass cycle

neutron star

white dwarf Core Collapse Supernova

black hole

Nuclear Astrophysics at a Glance

Nuclear Astrophysicist's Chart

Experimental Quantities to be Measured

- Quiescent (stable) burning:
 - reaction rates
 - lifetimes
- Explosive burning (e.g. *rp*-process nucleosynthesis: X-ray bursts, classical novae):
 - reaction rates: (p, γ) , (α, p) , fusion, etc.
 - lifetimes
 - masses
- *r*-process nucleosynthesis:
 - masses
 - β -decay lifetimes
 - P_n values
 - reaction rates: (n, γ)

Competition: What happens to a nucleus in a star?

Competition: What happens to a nucleus in a star?

Experimental Quantities to be Measured

- Quiescent (stable) burning:
 - reaction rates
 - lifetimes
- Explosive burning (e.g. *rp*-process nucleosynthesis: X-ray bursts, classical novae):
 - \rightarrow reaction rates: (p, γ) , (α, p) , fusion, etc.
 - lifetimes
 - masses
- *r*-process nucleosynthesis:
 - masses
 - $-\beta$ -decay lifetimes
 - P_n values
 - reaction rates: (n, γ)

These quantities dictate:

- the reaction flow
- elemental abundances
- energy output
- evolution of star Reactions are important!!
 - ... and us!

Reaction Rates

- How often does a reaction A(a,b)B happen in a stellar plasma??
- What matters?
 - number density of target nuclei: N_A
 - number density of projectile nuclei: N_a
 - relative velocities (energies) of particles: v
 - reaction area for reaction: $\sigma(v)$
- Basic form of reaction rate:

$$r = N_A N_a v \sigma(v)$$

Velocity (Energy) dependence!!

Charged Particle Reaction Rates

- Stars are hot . . . but not that hot!
- How much energy does a the average proton have in the sun?
 - − 1 keV (E ~ kT)
- But the Coulomb repulsion between two protons is:

$$V_C = \frac{Z_1^2 Z_2^2 e^2}{r} = 550 \text{ keV}$$

- How do protons fuse in our Sun??
 - Tunneling!!
- Tunneling probability of 1 keV proton?
 - 8.9 x 10⁻¹⁰!!!

Energy Distribution of Protons in Sun

- Of course, not every single proton has 862 eV of energy there is some distribution $\phi(v)$
- This probability distribution
 - must normalize to unity
 - must be folded in with $v\sigma(v)$

$$\int_{0}^{\infty} \phi(v) dv = 1$$
$$\langle \sigma v \rangle = \int_{0}^{\infty} \phi(v) v \sigma(v) dv$$

$$r = N_A N_a \left\langle \sigma v \right\rangle \left(1 + \delta_{Aa} \right)^{-1}$$

$$r = N_A N_a \left\langle \sigma v \right\rangle = N_A N_a \int_0^\infty \int_0^\infty \phi(v_A) \phi(v_a) v \sigma(v) dv_A dv_a$$

Energy Distribution of Particles in Plasma

Reaction Rates

$$\left\langle \sigma v \right\rangle = \int_{0}^{\infty} \int_{0}^{\infty} \phi(v) v \sigma(v) dv \phi(V) dV$$

$$\langle \sigma v \rangle = 4\pi \left(\frac{\mu}{2\pi kT}\right)^{3/2} \int_{0}^{\infty} v^{3} \exp\left(-\frac{\mu v^{2}}{2kT}\right) \sigma(v) dv$$

In terms of center of mass energy, $E = 1/2 \mu v^2$, we can rewrite the **reaction rate per particle pair** as:

$$\langle \sigma v \rangle = \left(\frac{8}{\mu\pi}\right)^{1/2} \frac{1}{\left(kT\right)^{3/2}} \int_{0}^{\infty} E\sigma(E) \exp\left(-\frac{E}{kT}\right) dE$$

Notice: 1. The energy depend terms are all in the integral!!2. Temperature dependence

- Two types of reaction rates:
 - non-resonant
 - resonant
- Non-resonant reactions:
 - one-step process
 - can occur at any energy
 - electromagnetic process
 - cross section varies smoothly but drops quickly
 - measurements at low (stellar) energies are difficult!

Schematic of a non-resonant capture (direct capture) process: Rolfs and Rodney, 1988

- Two types of reaction rates:
 - non-resonant
 - resonant
- Non-resonant reactions:
 - one-step process
 - can occur at any energy
 - electromagnetic process
 - cross section varies smoothly but drops quickly
 - measurements at low (stellar) energies are difficult!
- Form of cross section??

$$\langle \sigma v \rangle = \left(\frac{8}{\mu\pi}\right)^{1/2} \frac{1}{\left(kT\right)^{3/2}} \int_{0}^{\infty} E\sigma(E) \exp\left(-\frac{E}{kT}\right) dE$$

• Probability for tunneling where $R_c >> R_n$:

$$P = \exp(-2\pi\eta)$$
 where $\eta = \frac{Z_1 Z_2 e^2}{\hbar v}$

The cross section is also proportional to 1/E, and can be written as:

$$\sigma(E) = \frac{1}{E} \exp(-2\pi\eta) S(E)$$

- S(E) is the astrophysical S-factor and contains all strictly nuclear effects
- The S-factor varies much less rapidly and can be extrapolated to stellar energies – THIS is often what we are after!

• Probability for tunneling where $R_c >> R_n$:

$$P = \exp(-2\pi\eta)$$
 where $\eta = \frac{Z_1 Z_2 e^2}{\hbar v}$

 The cross section is also proportional to 1/E, and can be written as:

$$\sigma(E) = \frac{1}{E} \exp(-2\pi\eta) S(E)$$

Non-resonant reaction rate:

$$\left\langle \sigma v \right\rangle_{NR} = \left(\frac{8}{\pi\mu}\right)^{1/2} \frac{1}{\left(kT\right)^{3/2}} \int_{0}^{\infty} S(E) \exp\left(-\frac{E}{kT} - \sqrt{\frac{E_G}{E}}\right) dE$$

 $E_{G} = \left[\left(2\mu \right)^{1/2} \pi e^{2} Z_{1} Z_{2} / \hbar \right]^{2}$

Gamow Energy:

We can **expand** *S*(*E*) around zero energy and get these values from the fit to the data!

• Probability for tunneling where $R_c >> R_n$:

$$P = \exp(-2\pi\eta)$$
 where $\eta = \frac{Z_1 Z_2 e^2}{\hbar v}$

The cross section is also proportional to 1/E, and can be written as:

$$\sigma(E) = \frac{1}{E} \exp(-2\pi\eta) S(E)$$

Non-resonant reaction rate:

$$\left\langle \sigma v \right\rangle_{NR} = \left(\frac{8}{\pi\mu}\right)^{1/2} \frac{1}{\left(kT\right)^{3/2}} \int_{0}^{\infty} S(E) \exp\left(-\frac{E}{kT} - \sqrt{\frac{E_G}{E}}\right) dE$$

 $E_{G} = \left[\left(2\mu \right)^{1/2} \pi e^{2} Z_{1} Z_{2} / \hbar \right]^{2}$

Gamow Energy:

Reaction rate folds together the **Maxwell-Boltzmann distribution** and the **Nuclear cross section**

Gamow Window

Reaction	site	Т (10 ⁶ К)	kT (keV)	r _{turn} (fm)	r (fm)	E ₀ (keV)
p+p	sun	15	1.3	1100	2.5	6
p+ ¹⁴ N	CNO	30	2.6	3900	4.3	42
α+ ¹² C	red giant	190	16	1060	4.8	300
p+ ¹⁷ F	nova	300	26	500	4.5	230
α+ ³⁰ S	x-ray burst	1000	86	500	5.9	1800
³ He+ ⁴ He	big bang	2000	170	33	3.8	580

Direct Measurement of ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$

Measurement of ³He(α, γ)⁷Be @ LUNA

- Laboratory deep underground (Gran Sasso mine)
- Can perform direct measurements at very low background
- High Intensity Beams

S(E) - FACTOR (keV-

- Two types of reaction rates:
 - non-resonant
 - resonant
- Resonant reaction rates:
 - two-step process
 - creates excited state in compound nucleus
 - occur at specific (resonance) energies
 - vary dramatically over small energy ranges (resonances)
 - can have very high cross sections if beam energy satisfies:

$$E_R = E_x - Q$$

• From of cross section??

PROTON ENERGY En(lab) [MeV]

- Resonances can be narrow or broad
- Narrow resonances:
 - Width Γ < 10% of E_R
- Resonant phenomena occur in nature all the time!
 - e.g. damped oscillator

$$\frac{f}{\left(\omega-\omega_{0}\right)+\left(\delta/2\right)^{2}}$$

Breit-Wigner cross section has this form:

$$\sigma_{BW}(E) = \pi \tilde{k}^2 \frac{2J+1}{(2J_A+1)(2J_a+1)} (1+\delta_{Aa}) \frac{\Gamma_a \Gamma_b}{(E-E_R)^2 + (\Gamma/2)^2}$$

statistical factor

Rolfs & Rodney 1988

$$N_{A} \langle \sigma \mathbf{v} \rangle = \frac{1.5399 \times 10^{11}}{(\mu T_{9})^{3/2}} \sum_{i} (\omega \gamma)_{i} e^{-11.605 E_{i}/T_{9}}$$

$$\left(\omega\gamma\right)_{i} = \frac{\left(2J_{i}+1\right)}{\left(2J_{0}+1\right)\left(2J_{1}+1\right)}\left(1+\delta_{01}\right)\frac{\Gamma_{a}\Gamma_{b}}{\Gamma_{tot}}$$

 E_r = resonance energy J = spins of states Γ = particle widths

- Two types of measurements:
 - direct: measure the reaction of interest directly
 - Pros: measuring what happens in nature
 - Cons: loooowwww cross sections, low intensity RIBs, challenging kinematics (inverse kinematics)
 - indirect: measure nuclear structure components which go into the reaction rate
 - Pros: you pick reaction (stable and/or high intensity beams, well-known experimental techniques, etc.)
 - Cons: not measuring reaction of interest

Both types of measurements are needed:

 nuclear structure information needed to know which resonances are important and where to find them!

Rolfs & Rodney 1988

$$N_{A} \langle \sigma \mathbf{v} \rangle = \frac{1.5399 \times 10^{11}}{(\mu T_{9})^{3/2}} \sum_{i} (\omega \gamma)_{i} e^{-11.605 E_{i}/T_{9}}$$

$$\left(\omega\gamma\right)_{i} = \frac{\left(2J_{i}+1\right)}{\left(2J_{0}+1\right)\left(2J_{1}+1\right)}\left(1+\delta_{01}\right)\frac{\Gamma_{a}\Gamma_{b}}{\Gamma_{tot}}$$

 E_r = resonance energy J = spins of states Γ = particle widths

Reaction Rate Measurements: Classical Novae

- Classical nova rate = 35/year
- Peak temperatures: 0.1 0.4 GK
- Luminosity increase by a factor of 10⁴

- Hydrogen converted to He via hot CNO cycle
- electron degeneracy \rightarrow pressure
- Temperature builds → thermonuclear runaway
- Breakout from CNO cycle from ¹⁸F: ${}^{18}F(p, \alpha){}^{15}O(\alpha, \gamma){}^{19}Ne(p, \gamma){}^{20}Na$ ${}^{18}F(p, \gamma){}^{19}Ne(p, \gamma){}^{20}Na$ ${}^{18}F(\beta){}^{18}Ne(\alpha, p){}^{21}Na$

Reaction Rate Measurements: Classical Novae

- Classical nova rate = 35/year
- Peak temperatures: 0.1 0.4 GK
- Luminosity increase by a factor of 10⁴

- Hydrogen converted to He via hot CNO cycle
- electron degeneracy \rightarrow pressure
- Temperature builds → thermonuclear runaway
- Breakout from CNO cycle from ¹⁸F: ${}^{18}F(p, \alpha){}^{15}O(\alpha, \gamma){}^{19}Ne(p, \gamma){}^{20}Na$ ${}^{18}F(p, \gamma){}^{19}Ne(p, \gamma){}^{20}Na$ ${}^{18}F(\beta){}^{18}Ne(\alpha, p){}^{21}Na$

Solving a reaction rate network

The CN cycle: hydrogen burning

Identify important reactions

Nuclear physics \rightarrow reaction rates

Astrophysical model to define the equations of state: ρ, T

Network of many coupled equations

$$\frac{dN_{12C}}{dt} = N_{15N}N_p \langle \sigma v \rangle_{15Np} - N_{12C}N_p \langle \sigma v \rangle_{12Cp}$$

$$\frac{dN_{13N}}{dt} = N_{12C}N_p \langle \sigma v \rangle_{12Cp} - N_{13N}N_p \langle \sigma v \rangle_{13Np} - \lambda_{13N}N_{13N}$$
$$\frac{dN_{13C}}{dt} = \lambda_{13N}N_{13N} - N_{13C}N_p \langle \sigma v \rangle_{13Cp}$$
$$\frac{dN_{14O}}{dt} = N_{13N}N_p \langle \sigma v \rangle_{13Np} - \lambda_{14O}N_{14O}$$

$$\frac{dN_{14N}}{dt} = N_{13C}N_p \langle \sigma v \rangle_{13Cp} + \lambda_{14O}N_{14O} - N_{14N}N_p \langle \sigma v \rangle_{14Np}$$

$$\frac{dN_{150}}{dt} = N_{14N}N_p \langle \sigma v \rangle_{14Np} - \lambda_{150}N_{150}$$

$$\frac{dN_{15N}}{dt} = \lambda_{15O} N_{15O} - N_{15N} N_p \langle \sigma v \rangle_{15Np}$$

Numerically solve for $N_x(t)$

Solving a reaction rate network

Network of many coupled equations

The CN cycle: hydrogen burning

Reactions in Classical Novae

Sensitivity studies vary the reaction rates to show which ones affect the final elemental abundances produce by novae

C. Iliadis et al, ApJ SS 142, 105 (2002)

 Most important reaction rates known, except a few such as ¹⁸F(p,α)¹⁵O ³⁰P(p,γ)³¹S
 ²⁵Al(p,γ)²⁶Si

	NT T	
	KI . H	
101		12

INFLUENCE OF REACTION-RATE VARIATIONS ON ISOTOPIC ABUNDANCES IN NOVA NUCLEOSY NTHESIS^a

Reaction-Rate						
Variation ^b	Isotopic Abundance Change ^e					
CO Nova Models						
¹⁷ O(p, γ) ¹⁸ F	¹⁸ F					
¹⁷ O(p, α) ¹⁴ N	¹⁷ O, ¹⁸ F					
¹⁸ F(p, α) ¹⁵ O	¹⁸ F					
²² Ne(p, γ) ²³ Na	²² Ne, ²³ Na, ²⁴ Mg, ²⁵ Mg, ²⁶ Al					
²³ Na(p, γ) ²⁴ Mg	²⁴ Mg					
²⁶ Mg(p, γ) ²⁷ Al	²⁶ Mg					
²⁶ Al ^g (p, γ) ²⁷ Si	²⁶ Al					
ONe Nova Models						
$^{17}O(p, \gamma)^{18}F$	¹⁷ O, ¹⁸ F					
$^{17}O(p, \alpha)^{14}N$	¹⁷ O, ¹⁸ F					
¹⁷ F(p, γ) ¹⁸ Ne	¹⁷ O, ¹⁸ F					
¹⁸ F(p, α) ¹⁵ O	¹⁶ O, ¹⁷ O, ¹⁸ F					
21 Na(p, γ) 22 Mg	²¹ Ne, ²² Na, ²² Ne					
²² Ne(p, γ) ²³ Na	²² Ne					
²³ Na(p, γ) ²⁴ Mg	²⁰ Ne, ²¹ Ne, ²² Na, ²³ Na, ²⁴ Mg, ²⁵ Mg, ²⁶ Mg, ²⁶ Al, ²⁷ Al					
²³ Mg(p, γ) ²⁴ Al	²⁰ Ne, ²¹ Ne, ²² Na, ²³ Na, ²⁴ Mg					
²⁶ Mg(p, γ) ²⁷ Al	²⁶ Mg					
²⁶ Alg(p, y) ²⁷ Si	²⁶ Al					
²⁶ Al ^m (p, γ) ²⁷ Si	²⁶ Mg					
²⁹ Si(p, γ) ³⁰ P	²⁹ Si					
$^{30}P(p, \gamma)^{31}S$	30Si, 32S, 33S, 34S, 35Cl, 37Cl, 36Ar, 37Ar, 38Ar					
33S(p, γ)34Cl	33S, 34S, 35Cl, 36Ar					
33Cl(p, 7)34Ar	³³ S					
34S(p, \chi)35Cl	³⁴ S, ³⁵ Cl, ³⁶ Ar					
34Cl(p, \cap)35Ar	³⁴ S					
37Ar(p, γ) ³⁸ K	³⁷ Cl, ³⁷ Ar, ³⁸ Ar					
38K(p, \chi)39Ca	³⁸ Ar					

Why ²⁶Al?

- Radioisotope!
 - ²⁶Al^g has a long half-life
 (7.2 x 10⁵ yrs), that is *short* on Galactic time scales
 - 1.809-MeV γ ray emitted from excited ²⁶Mg level populated via ²⁶Al^g β decay can be detected
 - despite all-sky map of ²⁶Al^g production site(s) remain in question

²⁶Al in Pre-Solar Grains

- Snap shots of stars brought to Earth via meteorites
- Allende meteorite:
 - ${}^{26}AI/{}^{27}AI \sim 5.5 \times 10^{-5}$ at time of formation
 - first indication of ²⁶Al being produced in our Galaxy!

L. Nittler, EPS Lett. 209 (2003) 259.

²⁶Al in Pre-Solar Grains

- Snap shots of stars brought to Earth via meteorites
- Allende meteorite:
 - ²⁶Al/²⁷Al ~ 5.5 x 10⁻⁵ at time of formation
 - first indication of ²⁶Al being produced in our Galaxy!

²⁶Al(p, γ)²⁷Si and ²⁵Al(p, γ)²⁶Si

- ²⁶Al^g is formed:
 - decays to ²⁶Mg*
 - proton capture to ²⁷Si
- ²⁵Al(*p*, γ)²⁶Si
 - competes with β decay
 - bypasses production of ²⁶Al^g
- Indirect and direct measurements both needed
- Where are the ²⁷Si resonances?
 - transfer reaction data e.g. ²⁶Al(³He,d)²⁷Si

²⁶Al(p, γ)²⁷Si and ²⁵Al(p, γ)²⁶Si

- ²⁶Al^g is formed:
 - decays to ²⁶Mg*
 - proton capture to ²⁷Si
- ²⁵Al(*p*, γ)²⁶Si
 - competes with β decay
 - bypasses production of ²⁶Al^g
- Indirect and direct measurements both needed
- Where are the ²⁷Si resonances?
 - transfer reaction data e.g. ²⁶Al(³He,d)²⁷Si
- Performed with the Princeton cyclotron and QDDD spectrometer
 - ³He beam incident on ²⁶Al target

FIG. 3. Deuteron groups identified by the excited state of the residual nucleus. Those from 28 Si are labeled above the curve, while those from 27 Si states are labeled below.

Vogelaar et al, PRC 53, 1945 (1996)

Direct Study of ${}^{26}Al^{g}(p, \gamma){}^{27}Si$

- Recoil separators do what the name says → separate recoiling reaction products!
- Multiple recoil separators in the world:
 - DRAGON (TRIUMF)
 - St. George (Notre Dame)
 - Daresbury Recoil Separator (ORNL)
 - ARES (Louvain-le-Neuve)
 - Future: SECAR at ReA3 and FRIB

27**Si**

Direct Study of ${}^{26}Al(p, \gamma){}^{27}Si$

γ rays detected in DRAGON head by an array of BGO detectors ²⁷Si detected in DRAGON tail by MCP detector

Direct Study of ${}^{26}Al(p, \gamma){}^{27}Si$

New results [Ruiz *et al.* PRL **96** 252501 (2006)]

 $E_{c.m.} = 184 \pm 1 \text{ keV}$

- ωγ = 35 ± 7 μeV
- Old values [Vogelaar, PhD Thesis (1989)]
 > E_{c.m.} = 188 keV
 > ωγ = 55 ± 9 μeV
- Lower resonance strength favors production of ²⁶Al in novae
- New data results in 20% increase in ²⁶Al ejected in ONe novae using current models (compared with Vogelaar data)

Reactions in Classical Novae

TABLE 12 Influence Of Reaction-Rate Variations on Isotopic Abundances in Nova Nucleosynthesis^a

Studying levels in ²⁶Si

- Indirect techniques used to study:
 - energies of excited states (resonance energies)
 - spins
 - particle partial widths

- Transfer reactions: — regular kinematics with stable
 - beams
 - inverse kinematics with stable or radioactive ion beams
 - different transfer reactions probe different states in compound nucleus
- Other studies:
 - delayed proton decays
 - coincidence measurements with particle decays

$$N_{A} \langle \sigma \mathbf{v} \rangle = \frac{1.5399 \times 10^{11}}{\left(\mu T_{9}\right)^{3/2}} \sum_{i} \left(\omega \gamma\right)_{i} e^{-11.605 E_{i}/T_{9}}$$
$$\left(\omega \gamma\right)_{i} = \frac{\left(2J_{i}+1\right)}{\left(2J_{0}+1\right)\left(2J_{1}+1\right)} \left(1+\delta_{01}\right) \frac{\Gamma_{a}\Gamma_{b}}{\Gamma_{tot}}$$

Transfer studies for ²⁶Si:

- ➢ ²⁸Si(p,t)²⁶Si
- ➢ ²⁹Si(³He,⁶He) ²⁶Si
- ➢ ²⁴Mg(³He,n)²⁶Si
- ➢ ²⁵Al(d,n)²⁶Si

Transfer Studies in Regular Kinematics

- ²⁸Si(*p*,*t*)²⁶Si transfer reaction at RCNP, Osaka
- Measured:
 - excitation energies
 - angular distributions ightarrow transferred L

to Grand Raiden

Calculated particle partial widths

Spectrometer ²⁸Si target

Matic *et al.,* PRC **82**, 025807 (2010)

Transfer Studies in Inverse Kinematics

- ²⁵Al(*d*,*n*)²⁶Si*(*p*)²⁵Al proton-adding reaction
- Performed at Florida State University's RESOLUT facility

FIG. 1. (a) Proton decay *Q*-value spectrum, in the inversekinematics ${}^{25}\text{Al}(d,n){}^{26}\text{Si} \rightarrow p + {}^{25}\text{Al}$ reaction, measured with a CD₂ target. The dashed line indicates the energy dependence of the particle detection efficiency in arbitrary units. (b) Beam-backgroundsubtracted spectrum obtained by subtracting the ${}^{24}\text{Mg}$ *Q* = 12+ beam contamination from the spectrum A. (c) Spectrum measured using a ${}^{12}\text{C}$ target. (d) Proton decay *Q*-value spectrum, measured in the inverse-kinematics ${}^{24}\text{Mg}(d,n){}^{25}\text{Al} \rightarrow n + {}^{24}\text{Mg}$ reaction while P. N. Peplowski *et al.*, PRC **79**, 032801(R) (2009)

Transfer Studies in Inverse Kinematics

- ²⁵Al(*d*,*n*)²⁶Si*(*p*)²⁵Al proton-adding reaction
- Performed at Florida State University's RESOLUT facility

FIG. 2. Reaction rates based on direct capture and the three resonances displayed in Table I (see text).

P. N. Peplowski et al., PRC 79, 032801(R) (2009)

Measuring Partial Widths

- Excitation energies and spins: straight forward transfer measurements
- Particle widths can be more challenging . . .
- ²⁶P (produced at NSCL via ³⁶Ar on a ⁹Be target) implanted in segmented germanium detector (GeDSSD)
- Gammas from ²⁶P(β)²⁶Si*(p)²⁵Al detected by SeGA array in coincidence with β's detected in the GeDSSD

Measuring Partial Widths

- Excitation energies and spins: straight forward transfer measurements
- Particle widths can be more challenging . . .
- ²⁶P (produced at NSCL via ³⁶Ar on a ⁹Be target) implanted in segmented germanium detector (GeDSSD)
- Gammas from ${}^{26}P(\beta){}^{26}Si^*(\gamma){}^{26}Si$ detected by SeGA array in coincidence with β 's detected in the GeDSSD

Measuring Partial Widths

- Excitation energies and spins: straight forward transfer measurements
- Particle widths can be more challenging . . .
- ²⁶P (produced at NSCL via ³⁶Ar on a ⁹Be target) implanted in segmented germanium detector (GeDSSD)
- Gammas from ${}^{26}P(\beta){}^{26}Si^*(\gamma){}^{26}Si$ detected by SeGA array in coincidence with β 's detected in the GeDSSD
- New results of gamma width increase from 20% to 30% in ²⁶Al produced by novae!

M. B. Bennett et al., PRL 111, 232503 (2013)

Coincidence Measurements

- Two transfer reactions performed at Yale's Wright Nuclear Structure Laboratory
 - ${}^{28}\text{Si}({}^{3}\text{He},\alpha){}^{27}\text{Si}^{*}(p){}^{26}\text{Al}$
 - ${}^{27}\text{Al}({}^{3}\text{He},t){}^{27}\text{Si}^{*}(p){}^{26}\text{Al}$
- Enge spectrograph used to determine energy of excited states
- Proton decays from ²⁷Si resonances detected using Si array in coincidence

Coincidence Measurements 200 - 2000 -

150 - 1500

100 - 1000

50 - 50

²⁸Si(³He,α)²⁷Si*(p) ²⁶Al

1900

2000

Channel

2100

1800

- Two transfer reactions performed at Yale's Wright Nuclear Structure Laboratory
 - ${}^{28}\text{Si}({}^{3}\text{He},\alpha){}^{27}\text{Si}^{*}(p){}^{26}\text{Al}$
 - ²⁷Al(³He,*t*)²⁷Si*(*p*)²⁶Al
- Enge spectrograph used to determine energy of excited states
- Proton decays from ²⁷Si resonances detected using Si array in coincidence

Coincidence Measurements

- Two transfer reactions performed at Yale's Wright Nuclear Structure Laboratory
 - ${}^{28}\text{Si}({}^{3}\text{He},\alpha){}^{27}\text{Si}^{*}(p){}^{26}\text{Al}$
 - ²⁷Al(³He,t)²⁷Si*(p)²⁶Al
- Enge spectrograph used to determine energy of excited states
- Proton decays from ²⁷Si resonances detected using Si array in coincidence
- Measured
 - excitation energies (resonance energies)
 - angular momentum transfer (spin information)
 - proton branching ratios: $\Gamma_{
 ho}/\Gamma_{tot}$
- Indirectly calculated ${}^{26}AI^{m}(p,\gamma){}^{27}Si$ reaction rate

C. M. Deibel et al., PRC 80 035806 (2009)

Fusion Evaporation Studies with Gammasphere

- 26-MeV ¹⁶O beam on ¹²C target
- Fusion evaporation used to populate ²⁷Si resonances
- Gamma-rays detected in Gammasphere to determine energies and spins

G. Lotay et al., PRL 102, 162502 (2009)