NUCLEAR STRUCTURE WITH GAMMA-RAYS PART II

Heather Crawford Ohio University

Exotic Beam Summer School 2014 – Oak Ridge, TN

• Yesterday

- Basics of gamma-rays
- Interaction of gamma-rays in matter
- Today (Wednesday July 30)
 - Practical Aspects detection etc.
 - Types of detectors
 - Characterizing detectors
 - Tracking detectors
 - Experiments with gamma-rays
 - Polarization in Mg, neutron knockout, g-factors and lifetimes

Overview (II)

- Basic detector principles
 - Scintillators vs. semiconductors
 - Gamma-ray tracking arrays
- Examples of gamma-ray spectroscopy in nuclear structure
 - ²⁴Mg(p,p') polarization
 - Neutron knockout
 - g-Factors
 - Lifetimes via the plunger method

GAMMA-RAY DETECTION: BASIC PRINCIPLES

- Fundamentally, we can detect a gamma-ray if it can leave energy in our detector that we can collect
- Gamma-rays primarily interact with electrons most detectors therefore high Z
- Methods for measuring energy transferred to electrons vary... but we worry about 3 basic performance parameters:
 - Energy resolution
 - Efficiency
 - Peak-to-total (P/T) probability that a detected gamma-ray actually makes it into the peak

Scintillators

High efficiency $\sim 40\%$

Intrinsic energy resolution determined by statistics of photoelectrons in the PMT - for scintillators, resolutions \sim 6-7%

RESOLUTION IN SCINTILLATORS

- Energetic particle traveling through a detector (i.e. electron from gamma-ray interaction). Per length traveled dx, this particle may produce scintillation photon, which may make it to the photo-cathode, be converted to a photo-electron and contribute to a signal
 - CsI(Tl) yields 39,000 photons / 1 MeV gamma
 - Light collection + PMT efficiency = 15%
 - 6000 photons collected on average -- σ = $\sqrt{6000}$ = 77
 - FWHM = $180 \rightarrow dE/E = 3\%$

Semi-Conductors

- Semiconductors like HPGe provide a gold standard for gamma-ray energy resolution
- Energy required to excite electron into the conduction band \sim 3 eV, many more electron-hole pairs than photons for a scintillator

conduction band

ENERGY RESOLUTION IN HPGe

- Energy resolution for Ge is \sim order of magnitude better than scintillators
- So what are the downsides?
 - Very expensive (> \$10K)
 - Smaller than scintillator crystals usually
 - Require cooling (LN₂)
 - Slower response (timing Ge 5-10ns;

scintillator << 1 ns)

COMPTON SUPPRESSION

 Eliminate Eliminate contribution from Compton-scattered gammarays, which contribute to background, by vetoing these events using a high-efficiency scintillator surrounding the Ge crystal

- Will Compton suppression shields eliminate the backscatter peak in a gamma-ray spectrum? What about the Compton edge?
 - (A) No; Yes
 - (B) Yes; No
 - (C) No; No
 - (D) Yes; Yes
 - (E) The backscatter peak and Compton edge are the same thing

QUESTION!

 Will Compton suppression shields completely eliminate the backscatter peak in a gamma-ray spectrum? What about the Compton edge?

(E) The backscatter peak and Compton edge are the same thing

$$E' = \frac{E}{1 + \frac{E}{m_0 c^2} (1 - \cos \theta)}$$

(A) No; Yes

(B) Yes; No

No; No

Yes; Yes

Compton edge when E' is as small as possible – amount deposited in detector is large – corresponds to $\theta = 180^{\circ}$

TIMELINE OF γ -Ray Spectroscopy

BENCHMARK: RESOLVING POWER

GAMMA-RAY ENERGY TRACKING ARRAY

 Build a 4π sphere of Ge, using highly-segmented detectors
 Gamma-ray tracking allows rejection of Compton scattering events, Signal decomposition allows sub-segment position resolution

GRETA

- GRETA will be a 4π solid sphere of HPGe, composed of 120 individual crystals, housed as quads
- Array will be self-shielding, signal decomposition and tracking allows for Compton rejection, and sub-segment first-hit localization for Doppler correction

GRETINA: ¼ OF GRETA (SORT OF)

- GRETINA is the first-stage of GRETA, an array covering ¼ of 4π, consisting of 28 individual crystals in 7 quads
- Something to consider: ¼ of a full HPGe sphere is no longer selfshielding

Construction started at LBL in 2005 Commissioning runs at LBL finished in March, 2012

SIGNAL DECOMPOSITION

COMPTON TRACKING

 $\frac{1}{1 + \frac{E_{\gamma}}{0.511} (1 - \cos\theta)}$ $E_e = E_{\gamma} | 1$ Assume: • $E_g = E_{e1} + E_{e2} + E_{e3}$ γ -ray from the source

Problem: 3!=6 possible sequences

angle of next point θ_{C} angle calculated from E γ and E $_{e}$ $\theta - \theta c$ Eγ $\chi^2 = \sum (\theta - \theta_c)^2$ E_e

Sequence with the minimum $\chi^2 < \chi^2_{max}$ \rightarrow correct scattering sequence \rightarrow rejects Compton and wrong direction

 \rightarrow Low-energy single interaction point y-rays don't track

SO WHAT DO WE GET FROM GRETINA?

- GRETINA (GRETA) provides us the benefits of Ge resolution, the background reduction of suppression and the maximum efficiency by allowing the most detector material to be in place
 - More resolving power than any previous array
- Do we gain anything else?

 24 Mg(p,p'g)²⁴Mg, E_p = 2.6 and 6 MeV P(2⁺,M=0) ~ 100% P(M=1) ~ few %

A. Wiens, LBNL

 θ Angle (Channels)

Angular distribution tracked

DOPPLER CORRECTION

Broadening of detected gamma-ray energy due to:

- Spread in speed Δ V
- Distribution in direction of velocity $\Delta \theta_{N}$
- Detector opening angle $\Delta \theta_{\rm D}$

NUCLEON KNOCKOUT REACTIONS

STRUCTURE OF NEUTRON-RICH Ca ISOTOPES

 Microscopic calculations including 3N forces make predictions for excitation energies, and for the evolution of the neutron SPEs in the neutron-rich Ca isotopes
 ⇒ Opportunity exists to test these most advanced calculations

J.D. Holt et al., J. Phys. G: Nucl. Part. Phys. 39, 085111 (2012).

KNOCKOUT REACTIONS

- Intermediate energy beams (> 50 MeV/nucleon)
 - Sudden approximation + eikonal approach for reaction theory
- Spectroscopic strengths
 - Populated states in A-1 residue provide detailed measure of beam structure

EXCLUSIVE MOMENTUM DISTRIBUTIONS IN ⁴⁷Ca

In neutron knockout from ⁴⁹Ca to ⁴⁸Ca, should you expect to populate a 6⁺ state?
 (A) No
 (B) Yes

QUESTION!

 In neutron knockout from ⁴⁹Ca to ⁴⁸Ca, should you expect to populate a 6⁺ state?

= $f_{7/2}$ $(p_{3/2})^1 (f_{7/2})^{-1} \dots \rightarrow 2^+, 3^+, 4^+, 5^+$

______ d_{3/2}

Neutrons (⁴⁹Ca)

 $\begin{array}{ll} \mathsf{d}_{3/2} & (\mathsf{p}_{3/2})^1 (\mathsf{d}_{3/2})^{-1} ... \to 0^+, \, 1^+, \, 2^+, \, 3^+ \\ \mathsf{s}_{1/2} & (\mathsf{p}_{3/2})^1 (\mathsf{s}_{1/2})^{-1} ... \to 1^+, \, 2^+ \end{array}$

Benchmark against ⁴⁸Ca(p,d)⁴⁷Ca

52'

⁴⁷Ca

7/2-

Ň

0

_	40	18 keV	Energy (keV)	Jπ	Configuration	C ² S ^a	C ² S ^b	σ (mb)	C ² S
	40	4 keV							
1/2+ 3/2+		437 keV	0 (g.s)	7/2-	(1f _{7/2}) ⁻¹	6.7	6.22	76.2±4.0	6.9±0.4
		862 keV	2014	3/2-	$[(1f_{7/2})^{-2}(2p_{3/2})^{1}]_{3/2}$	0.02	0.10	6.9±1.6	0.6±0.1
	╀		2578	3/2+	(1d _{3/2}) ⁻¹	3.6	1.18	9.7±1.8	1.3±0.2
		5 keV 4 keV	2599	1/2+	(2s _{1/2}) ⁻¹	1.8	1.28	11.1±2.0	0.9±0.2
3/2	Hard Kev	62 KeV 2599 keV 58	 2014 Cross-sections to individual states tell us about the occupancy (number of nucleons in a given single particle state) Transfer reactions (lower beam energies) provide similar 						
	ן ע ו	14 28/							

information

- (a) P. Martin et al., Nuclear Physics A185, 465 (1972). -- (p,d)
- (b) M.E. Williams-Norton and R. Abegg, Nuclear Physics A291, 429 (1977). (d,t)

MAGNETIC MOMENTS

Magnetic Moments

- Magnetic dipole moment has contributions from spin and angular momenta of protons and neutrons
- Single-particle state (Schmidt limits)

$$\mu = \frac{1}{j+1} \langle j, m = j | \vec{\mu} \cdot \vec{j} | j, m = j \rangle = g_l \langle l_z \rangle + g_s \langle s_z \rangle$$

Measurement of Magnetic Moment

- Produce a nucleus with spin alignment
 Coulomb excitation, transfer reaction, fission, etc...
- Magnetic moment will precess in magnetic field (B), according to Larmor frequency

$$\omega = \frac{\mu B}{J} = g B \frac{\mu_N}{\hbar} \implies g = \frac{\frac{\mu}{\mu_N}}{\frac{J}{\hbar}}$$

Measure the angular distribution (of gamma ray!)

$$W(\theta, t) = 1 + \sum_{k} A_k P_k(\cos(\theta + \omega t))$$

 States with shorter lifetimes (τ) need faster ω (stronger B field) to produce measurable precession angle

<i>g</i> = 1	ωτ=10°			
τ	В			
1 µsec	0.0036 T			
1 nsec	3.6 T			
1 psec	3644 T			

TRANSIENT FIELD METHOD

- Nucleus moves through magnetized material (e.g. Fe, Gd)
- Precesses in transient magnetic field B (≈100 Z T)
- Measure angular distribution of decay gamma ray

- Where should we place the detectors to maximize the sensitivity of transient field magnetic moment measurements? $W(\theta) = 1 + \sum A_k P_k(\cos\theta)$
 - (A) Maximum of $W(\theta)$
 - (B) 45°
 - (C) Maximum of $dW(\theta)/d\theta$
 - (D) Maximum of $|dW(\theta)/d\theta|$ (E) 60°

$$+\sum_{k}A_{k}P_{k}(\cos\theta)$$

QUESTION!

Magnetic Moment

- Example of ⁵⁷Fe g-factor measurement measured at ANU – 5/2⁻ state at 136 keV
- Measurement used as relative point for ⁵⁶Fe 2⁺

M. East *et al.*, Phys. Rev. C **79**, 024303 (2009).

Physics of Magnetic Moments

 g-factors are sensitive to proton/neutron contributions to nuclear states – where collective properties may vary smoothly, proton and neutron contributions can vary substantially

G. J. Kumbartzki et al., Phys. Rev. C 85, 044322 (2012).

LIFETIMES

LIFETIME MEASUREMENTS AND STRUCTURE

 Gamma transition lifetimes related to transition matrix elements – direct method to determine B(E2)

$$T_{fi}(\lambda L) = \frac{8\pi (L+1)}{\hbar L ((2L+1)!!)^2} \left(\frac{E_{\gamma}}{\hbar c}\right)^{2L+1} B(\lambda L: J_i \to J_f) \quad \{I_i \in \mathcal{J}_i\}$$

 First characterization of collectivity (deformation) often comes from transition probabilities – collective structures will have higher transition probabilities

LIFETIME MEASUREMENTS WITH PLUNGER

Lifetimes in ^{72,74}Kr

LIFETIMES IN ^{72,74}Kr

EBSS2014 - HLC

SUMMARY

- What should you take home:
 - Gamma spectroscopy can provide important details about nuclear levels – energy separations, spin information, etc.
 - Detectors for gamma spectroscopy are of two main types scintillators and Ge
 - Next generation spectrometers (GRETA) provide unparalleled performance (resolving power) and may open new experimental opportunities
 - Experiments including gamma spectroscopy are wide ranging, addressing many physics questions in our field THANK YOU TO A.O. MACCHIAVELLI,

I.Y. LEE AND D. WEISSHAAR FOR SLIDE

Questions?

 Binomial distribution – Roll a dice n times, what is the probability for rolling a 6 x times?

 Binomial distribution – Roll a dice n times, what is the probability for rolling a 6 x times?

$$P(x) = \frac{n!}{(n-x)!x!} p^x (1-p)^{n-x}$$
$$\langle x \rangle = np \qquad \sigma^2 = np(1-p)$$

 Binomial distribution – Roll a dice n times, what is the probability for rolling a 6 x times?

$$P(x) = \frac{n!}{(n-x)!x!} p^x (1-p)^{n-x}$$
$$\langle x \rangle = np \qquad \sigma^2 = np(1-p)$$

 Poisson distribution – Roll a 100-sided dice 1000 times, how many times do you get a 6?

 Binomial distribution – Roll a dice n times, what is the probability for rolling a 6 x times?

$$P(x) = \frac{n!}{(n-x)!x!} p^x (1-p)^{n-x}$$
$$\langle x \rangle = np \qquad \sigma^2 = np(1-p)$$

 Poisson distribution – Roll a 100-sided dice 1000 times, how many times do you get a 6?

$$P(x) = \frac{(pn)^{x} e^{-pn}}{x!} \quad \langle x \rangle = np \qquad \sigma^{2} = np \to \sigma = \sqrt{\langle x \rangle}$$

 Binomial distribution – Roll a dice n times, what is the probability for rolling a 6 x times?

$$P(x) = \frac{n!}{(n-x)!x!} p^x (1-p)^{n-x}$$
$$\langle x \rangle = np \qquad \sigma^2 = np(1-p)$$

 Poisson distribution – Roll a 100-sided dice 1000 times, how many times do you get a 6?

$$P(x) = \frac{(pn)^{x} e^{-pn}}{x!} \quad \langle x \rangle = np \qquad \sigma^{2} = np - \sigma = \sqrt{\langle x \rangle}$$

Adaptive Grid Search

Adaptive Grid Search algorithm:

Start on a course grid, to roughly localize the interactions, then refine the grid close by.

Pristine basis (set of signals at grid points) is calculated based on simulation; measurements are made to correct for effects such as segment cross-talk, etc.

TRACKING: CLUSTERING

First step in tracking is to find clusters of interaction points which likely belong to a single γ -ray scattering in the detector – based on opening angle into the Ge shell

Any two points with $\theta < \theta p$ are grouped into the same cluster

Adaptive Grid Search

Adaptive Grid Search algorithm:

Start on a course grid, to roughly localize the interactions, then refine the grid close by.

Pristine basis (set of signals at grid points) is calculated based on simulation; measurements are made to correct for effects such as segment cross-talk, etc.

3N FORCES: THE OXYGEN ANOMALY

- Many body theory based on NN-only forces places the position of the dripline for Z=8 at A=28, rather than the experimentally observed A=24
- Without 3N forces, the NN interaction is too attractive

ပ⁷လ က

Mixing of the $f_{7/2}$ and $p_{3/2}$?

Mixing may provide at least a partial explanation for depletion of the $f_{7/2}$ strength and enhancement of the $p_{3/2}$ occupancy

Reduction of the $f_{7/2}$ strength in the 7/2₁- state may also be related to fragmentation of strength to higher states as predicted by the microscopic calculations

⁴⁷Ca: GAMMA-GAMMA AND LEVEL SCHEME

