Standard Model and ion traps: symmetries galore

Jason Clark Exotic Beam Summer School

July 28 – August 1, 2014

Lecture 2 outline

- Overview of the Standard Model (SM)
- Nature of the weak interaction and β decay
- Tests of the SM description of the weak interaction
 - β -v correlations
 - unitarity of CKM matrix
 - constancy of *Ft* values
 - searches for neutrinoless double β decay
- Methods used to test SM description of weak interaction
 - Paul trap
 - Penning trap

Standard Model

Extremely successful at describing the world around us in terms of basic constituents and their interactions.

Still some open questions:

- what is dark energy?
- how did the matter/antimatter asymmetry come to be?

Is there something beyond the Standard Model?

Tests of the Standard Model: Superallowed $0^+ \rightarrow 0^+$ Fermi β decay

The nucleus is a complex quantum system not generally amenable to an exact description. However, by a proper choice of nuclear system, specific physical processes can be isolated and determined to high precision. (Ex: Superallowed $0+ \rightarrow 0+$ Fermi β decay)

Relationship between partial halflife, matrix element, and phase space:

$$\frac{t_{1/2}}{BR} = \frac{K}{G_V^2 \cdot \left|M_F\right|^2 \cdot f\left(Z, Q_\beta\right)}$$

Rearranging gives "ft value":

$$ft = \frac{K}{2G_V^2}$$
 $|M_F|^2 = 2$ For $0^+ \rightarrow 0^+$ decays

And including a bunch of small-ish corrections:

$$Ft = ft(1 + \delta_{R})(1 + \delta_{NS} - \delta_{C}) = \frac{K}{2G_{V}^{2}(1 + \Delta_{R}^{V})}$$

Many things we can investigate after studying several different nuclei

<u>*Ft* constant for $0^+ \rightarrow 0^+$ decays?</u>

Conserved vector current in weak interaction

symmetry between EM and weak interaction → conservation of vector part of weak interaction (like conservation of charge)

 V_{ud} from $u \rightarrow d$ transformation

U

Value of *Ft*?

Test unitarity of CKM matrix

Determine G_V^2 and compare to purely leptonic μ decay (G_{μ}^2) to extract V_{ud} matrix element

Penning traps improve precision of previouslystudied isotopes and provide access to new ones

Ft value depends strongly on Q_{h}

 $f(Z,Q_{\beta}) \sim Q_{\beta}^{5}$

Penning trap measurement of ⁴⁶V uncovered systematic shift in previous data from (³He,t) measurements

G. Savard et al., PRL 95, 102501 (2005)

Penning traps allow measurement of isotopes where both parent and daughter are radioactive

Figure from J.C. Hardy

Results and impact on weak interaction physics

Constancy of *ft* **values:**

Values constant to ±0.4% for all nuclei \rightarrow conservation of the weak C_V current (like EM current)

Determine V_{ud} matrix element:

 $|V_{ud}|^2 = 0.94916 \pm 0.00044$

And when combined with $|V_{us}|^2 + |V_{ub}|^2$, gives the unitarity test:

 $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.99995 \pm 0.00061$

Are neutrinos their own antiparticle? What is the neutrino mass scale and hierarchy?

Only known way to determine this is neutrinoless double beta decay $(0\nu\beta\beta)$ decay). In principle, this is a clear signature... but extremely sensitive techniques are required

A mechanism for matter/antimatter asymmetry

Penning traps precisely determine where to search for very tiny signal

Penning traps have pinned down Q values for the isotopes to <1 keV

<u>⁷⁶Ge</u>

B.J. Mount *et al.*, PRC **81**, 032501 (2010)
S. Rahaman *et al.*, PLB **662**, 111 (2008)
G. Douysset *et al.*, PRL **86**, 4259 (2001)
<u>130Te</u>

S. Rahaman *et al.*, PLB **703**, 412 (2011)

N.D. Scielzo et al., PRC 80, 025501 (2009)

M. Redshaw et al., PRL 102, 212502 (2009)

D.A. Nesterenko *et al.*, PRC **86**, 044313 (2012) <u>**82Se</u></u></u>**

D.L. Lincoln *et al.*, PRL **110**, 012501 (2013) ¹⁵⁰Nd

V.S. Kolhinen *et al.*, PRC **82**, 022501 (2010) <u>48Ca</u>

M. Redshaw *et al.*, PRC **86**, 041306 (2012) + **others**

Confining ions with both electric and magnetic fields ...

the Penning trap

F.M. Penning

H. G. Dehmelt

The 'not so easy' way to confine ions in 3D

Taking the general form of 1D confinement and extending it to 3D:

$$V = \lambda_x x^2 + \lambda_y y^2 + \lambda_z z^2$$

Result it that:

$$\lambda_x = \lambda_y = -\frac{1}{2}\lambda_z$$

$$\Rightarrow V = -\lambda(x^2 + y^2 - 2z^2)$$

Or in cylindrical coordinates:

$$\Rightarrow V = -\lambda(r^2 - 2z^2)$$

The 'not so easy' way to confine ions in 3D

If we define:
$$V = \frac{\varphi_o}{2}$$
 at $(r,z) = (\pm r_o, 0)$

then:

$$\lambda = -\frac{\varphi_o}{2r_o^2}$$

Result is equipotential surfaces:

$$\frac{r^2}{r_o^2} - \frac{2z^2}{r_o^2} = 1 \quad \text{with} \quad V = \frac{\varphi_o}{2}$$

$$\frac{r^2}{r_o^2} - \frac{2z^2}{r_o^2} = -1 \quad \text{with} \quad V = -\frac{\varphi_o}{2}$$

Dimensional constraint:

$$\left(\frac{r_o}{z_o}\right)^2 = 2$$

lons within a magnetic field

- constant axial magnetic field
- particle orbits in horizontal plane with cyclotron frequency:

$$\mathcal{W}_{c} = \frac{qB}{m}$$

• free to escape axially

Confine ions by adding an electric field

Confining potential:

Add a harmonic potential (along magnetic field axis) to confine particles.

$$V = \frac{V_o}{2d^2} (z^2 - \frac{r^2}{2})$$

Characteristic trap dimension:

Motion of ions in a Penning trap

Equations of motion: $\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$

Along magnetic field axis: $m\ddot{z} = -\frac{qV}{d^2}z$

Ions undergo oscillations with frequency: $\omega_z = \sqrt{\frac{eV}{md^2}}$

Motion of ions in a Penning trap

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$

Radial equations of motion:

$$\ddot{x} = \frac{\omega_z^2}{2}x + \omega_c \dot{y}$$
$$\ddot{y} = \frac{\omega_z^2}{2}y - \omega_c \dot{x}$$

Effect of the electric field is to split the radial motion into two components:

 ω_+ : reduced cyclotron motion ω_- : magnetron motion

$$\omega_{\pm} = \frac{\omega_c}{2} \pm \sqrt{\frac{\omega_c^2}{4} - \frac{\omega_z^2}{2}}$$

Putting it all together ... the frequency hierarchy

picture from http://isoltrap.web.cern.ch/isoltrap/

Frequency relations:

 $\omega_c^2 = \omega_+^2 + \omega_-^2 + \omega_z^2$ $\omega_c = \omega_+ + \omega_-$

Frequency hierarchy:

$$\omega_{-} << \omega_{z} << \omega_{+} \sim \omega_{c}$$

A u	$ u_z$	$ u_{-}$	$ u_+ $
1	$517 \mathrm{~kHz}$	$1475~\mathrm{Hz}$	91 MHz
10	163 kHz	$1475~\mathrm{Hz}$	$9.1~\mathrm{MHz}$
40	82 kHz	$1476~\mathrm{Hz}$	$2.2 \mathrm{~MHz}$
80	$58 \mathrm{kHz}$	$1477~\mathrm{Hz}$	$1.1 \mathrm{~MHz}$
115	48 kHz	$1478~\mathrm{Hz}$	$787 \mathrm{~kHz}$
190	38 kHz	$1480~\mathrm{Hz}$	$475~\mathrm{kHz}$
250	33 kHz	1481 Hz	$361 \mathrm{~kHz}$

Frequency values for singly charged ions in a Penning trap with parameters $r_0=14.4$ mm, $z_0=8.9$ mm, $U_0=10$ V, and B=5.9 T, as functions of mass number A.

Determining mass of ions in a Penning trap

Since:

$$\omega_c = \omega_+ + \omega_- = \frac{qB}{m}$$

 ω_c depends only on:

the massthe magnetic fieldnot on the electric fields

So if we can find a stable, uniform magnetic field, we can use ω_c to make accurate and precise mass measurements.

The solution: use a superconducting magnet

The Canadian Penning trap

Hockey puck

Cigarette

Detection of the energy gained from frequencyconversionMCP

• After excitation, ions are ejected from the trap and guided toward a microchannel plate ion detector

• Magnetic field gradient outside the Penning trap converts any radial energy into axial energy

• Higher energy ions arrive with shorter time-of-flight

lons from the Penning trap

Determining the cyclotron frequency

Sample time-of-flight (TOF) spectrum

Well-known mass is a requirement for accurate measurements.

What to use as a calibrant?

Want to use a well-known mass.

Most precise masses:

¹²C: $\Delta m = 0$ ⁴He: $\Delta m = 0.06 \text{ eV}$ ¹H: $\Delta m = 0.09 \text{ eV}$ ¹⁶O: $\Delta m = 0.15 \text{ eV}$

Generally, we use compounds of ¹H and ¹²C: masses are known precisely and hydrocarbons cover essentially all masses.

Energy and mass and precision

$$E = mc^2$$

Proton: $E = (1.67 \cdot 10^{-27} \text{ kg})(3 \cdot 10^8 \text{ m/s})^2$			
	$= 1.50 \cdot 10^{-10} \mathrm{J}$		
	= 0.939 GeV		
me:	$E = (72.5 \text{ kg})(3 \cdot 10^8 \text{ m/s})^2$		
	=40 EEeV		

For A=100, mass precision obtained ~ $300 \text{ eV} \Rightarrow 3x10^{-9}$ precision That's like measuring my mass to 0.0000002 kg!

Sample TOF spectra

Calibration: $C_5 H_8$

Increasing mass precision

Summary

- Standard Model is a robust model that describes basic constituents of nature and the interactions between them
 - yet still unresolved issues (matter-antimatter asymmetry, dark energy, ...)
- Low energy tests of SM description of weak interaction (β decay) have been quite fruitful
 - β-v correlations
 - unitarity of CKM matrix
 - constancy of Ft values
 - searches for neutrinoless double β decay
- Ion traps becoming one of the most used tools for precision tests of SM model:
 - Paul trap
 - Penning trap
- Potentially many new discoveries/advances early in your career!

Questions?

