nuclear astrophysics – lecture 3

Alan Chen McMaster University, Canada

rare isotopes in stars: gamma-ray astronomy (²⁶Al, ⁴⁴Ti)

- γ observations: γ -ray emission from ²⁶Al decay
 - diagnostic of ongoing nucleosynthesis
 - constraint on galactic chemical evolution

- <u>models</u>: need ²⁶Al yield predictions for different stars (e.g., supernovae, classical novae, AGB stars)
- important <u>reactions</u> affecting ²⁶Al synthesis:

²⁵Al(p,γ)²⁶Si ²⁶Al(p,γ)²⁷Si

[Cassiopeia A]

the nuclear origin of galactic ²⁶Al

the nuclear origin of galactic ²⁶Al

and the second se

Measurement of ${}^{26}AI(p,\gamma){}^{27}Si$ at TRIUMF-ISAC

- Goal: determine the (p, γ)-strength of the E_{cm} = 188 keV resonance
 - E_{beam}(²⁶AI) ~ 200 keV/u
 - Need ISAC beam intensity > 10⁹ ions per second

Measurement of ${}^{26}AI(p,\gamma){}^{27}Si$ at TRIUMF-ISAC

- Goal: determine the (p, γ)-strength of the E_{cm} = 188 keV resonance
 - E_{beam}(²⁶AI) ~ 200 keV/u
 - Need ISAC beam intensity > 10⁹ ions per second
 - Measure the yield of ²⁷Si recoils with DRAGON recoil separator (coincidence with prompt gamma rays)

The DRAGON facility

DRAGON: gas target

DRAGON: BGO array

DRAGON end-detectors: local time-of-flight

ribbon cable

DRAGON end-detectors

silicon strip detector ("DSSD")

- time, position, energy
- ²⁶Al(p,γ)²⁷Si

ionization chamber —

- energy for E-∆E particle identification
- ⁴⁰Ca(α,γ)⁴⁴Ti

bond wires

mounting holes

DRAGON: ionization chamber

[Ruiz et al., PRL (2006)]

 $\omega \gamma = 35 \pm 7 \ \mu eV$

Recently: ²³Mg(p,γ)²⁴Al with DRAGON (L. Erikson et al., PRC 2010)

Focused on important resonance of energy $E_R \sim 473$ keV:

• ²³Mg beam from ISAC: 5×10^7 pps

(strong contamination of ²³Na, 20:1 -1000:1)

• resonance energy: 486 ± 2 keV

(higher than previous value by 13 keV)

• resonance strength: $\omega \gamma = 38 \pm 20 \text{ meV}$

Measurement of Radiative Proton Capture on ¹⁸F and Implications for Oxygen-Neon Novae

C. Akers,^{1,2} A. M. Laird,² B. R. Fulton,² C. Ruiz,¹ D. W. Bardayan,³ L. Buchmann,¹ G. Christian,¹ B. Davids,¹ L. Erikson,⁴ J. Fallis,¹ U. Hager,⁵ D. Hutcheon,¹ L. Martin,¹ A. St. J. Murphy,⁶ K. Nelson,⁷ A. Spyrou,^{8,9} C. Stanford,¹⁰ D. Ottewell,¹ and A. Rojas¹

The rate of the ¹⁸F(p, γ)¹⁹Ne reaction affects the final abundance of the γ -ray observable radioisotope ¹⁸F, produced in novae. However, no successful measurement of this reaction exists and the rate used is calculated from incomplete information on the contributing resonances. Of the two resonances thought to play a significant role, one has a radiative width estimated from the assumed analogue state in the mirror nucleus, ¹⁹F. The second does not have an analogue state assignment at all, resulting in an arbitrary radiative width being assumed. Here, we report the first successful direct measurement of the ¹⁸F(p, γ)¹⁹Ne reaction. The strength of the 665 keV resonance ($E_x = 7.076$ MeV) is found to be over an order of magnitude weaker than currently assumed in nova models. Reaction rate calculations show that this resonance therefore plays no significant role in the destruction of ¹⁸F at any astrophysical energy.

PRL 102, 152502 (2009)	PHYSICAL	REVIEW	LETTERS	17 APRIL 2009
------------------------	----------	--------	---------	---------------

First Direct Measurement of the ${}^{17}F(p,\gamma){}^{18}Ne$ Cross Section

K. A. Chipps,^{1,*} D. W. Bardayan,² J. C. Blackmon,³ K. Y. Chae,⁴ U. Greife,¹ R. Hatarik,⁵ R. L. Kozub,⁶ C. Matei,⁷ B. H. Moazen,⁴ C. D. Nesaraja,^{2,4} S. D. Pain,^{2,4} W. A. Peters,⁵ S. T. Pittman,⁴ J. F. Shriner, Jr.,⁶ and M. S. Smith²

The rate of the ${}^{17}F(p,\gamma){}^{18}Ne$ reaction is important in various astrophysical events. A previous ${}^{17}F(p,p){}^{17}F$ measurement identified a 3⁺ state providing the strongest resonance contribution, but the resonance strength was unknown. We have directly measured the ${}^{17}F(p,\gamma){}^{18}Ne$ reaction using a mixed beam of ${}^{17}F$ and ${}^{17}O$ at ORNL. The resonance strength for the 3⁺ resonance in ${}^{18}Ne$ was found to be $\omega\gamma = 33 \pm 14(\text{stat}) \pm 17(\text{syst})$ meV, corresponding to a γ width of $\Gamma_{\gamma} = 56 \pm 24(\text{stat}) \pm 30(\text{syst})$ meV. An upper limit on the direct capture of $S(E) \leq 65$ keV b was determined at an energy of 800 keV.

future plans with DRAGON

Reaction	Importance	Experiment
¹⁷ F(p,γ) ¹⁸ Ne (Chen et al.)	production of gamma-emitter ¹⁸ F in novae; break out from the Hot-CNO cycle in x-ray bursts	Need 10 ⁷⁻⁸ ions per sec.
²⁵ Al(p,γ) ²⁶ Si (Chen et al.)	production of gamma-emitter ²⁶ Al in explosive hydrogen burning	Need 10 ⁸⁻⁹ ions per sec.

future plans with DRAGON

Reaction	Importance	Experiment
¹⁷ F(p,γ) ¹⁸ Ne (Chen et al.)	production of gamma-emitter ¹⁸ F in novae; break out from the Hot-CNO cycle in x-ray bursts	Need 10 ⁷⁻⁸ ions/sec
²⁵ Al(p,γ) ²⁶ Si (Chen et al.)	production of gamma-emitter ²⁶ Al in explosive hydrogen burning	Need 10 ⁸⁻⁹ ions/sec

Good candidate for "indirect" approaches...

²⁵Al(p, γ)²⁶Si, indirectly

the ²⁵Al(p,γ)²⁶Si reaction: indirect approaches

– Direct measurement:

• need beam with more than 10⁸ ions per second: ISAC? REX-ISOLDE?

– Indirect studies:

- (³He,⁶He) Caggiano et al. 2002
- (³He,n) Parpottas et al. 2004
- ²⁶P decay Thomas et al. 2004, Wrede et al. 2013
- ²⁶Si mass Parikh et al. 2005 + Eronen et al. 2009 + Kwiatkowski et al. 2010
- (⁴He,⁶He) Kwon et al. 2006
- (p,t) Bardayan et al. 2006
- (¹⁶O,2n) Seweryniak et al. 2007
- (d,n) Peplowski et al. 2009
- $(^{3}\text{He},n\gamma)$ Komatsubara et al. 2010 + de Séréville et al. 2010

McMaster: (*p,d*) with rare isotope beams at the NSCL

studying ²⁶Si at the NSCL with ²⁷Si(p,d)²⁶Si

p(²⁷Si,²⁶Si)d at NSCL: experiment details

- single neutron removal: easy beam intensity, large cross-section

- ²⁷Si beam (T_{1/2} = 4.2 sec)
 - − ³⁴Ar beam (150 MeV/u) + Be target \rightarrow fragmentation
 - selection of ²⁷Si ions with the S1900 spectrometer
 → 10⁶ ions/sec, 50% purity, 92 MeV/u
- proton target: CH₂ foil, ~ 2 mm thick, at the entrance to the S800 spectrometer
- goals:
 - populate excited states of ²⁶Si
 - measure decay gamma rays
 - search for the 3⁺ and 0⁺ proton-unbound states

²⁷Si(p,d)²⁶Si: experiment setup

silicon-26 in the S800

SeGA Detector Array (y-rays)

17 detectors in 2 rings32 segments in each detector3% photopeak efficiency (@ 1.3 MeV)2% energy resolution

37° ring

90° ring

CH₂ target position

γ -rays in SeGA: doppler broadening correction

$$E_{corrected} = \frac{1 - \beta \cos \theta}{\sqrt{1 - \beta^2}} E_{measured}$$

where
$$\beta = \frac{v}{c}$$
 and $v =$ velocity of 26 Si (~ 0.4 c)

γ -rays from ²⁶Si excited nuclear states

γ - γ coincidence analysis

²⁶Si level scheme

²⁶Si level scheme

²⁵Al(p, γ)²⁶Si with ²⁵Al+p elastic scattering

p(²⁵Al,p)²⁵Al with CRIB at CNS (RIKEN)

Local collaborators: S. Kubono and team, Center for Nuclear Study, University of Tokyo

p(²⁵Al,p)²⁵Al at CNS – beam production

- ²⁴Mg primary beam from cyclotron, ~ 25 nA
- ²⁵Al secondary beam produced using ²H(²⁴Mg,n)²⁵Al reaction,
 ~ 10⁶ ions per second

detection system setup (top view)

X (mm)

Δ E-E telescope: "gain-matching"

ΔE -E telescope: energy calibration

• with α -sources:

²⁴⁴Cm, ²⁴¹Am, ²³⁷Np (4.8 – 5.8 MeV)

with proton beams:

Energies: 5, 9 and 14 MeV

background determination and subtraction

p(²⁵Al,p)²⁵Al excitation function

²⁶Si resonance parameters

s-wave resonances in ²⁶Si from R-Matrix theory [J. Chen et al., PRC 2012]

Conclusions

Small sample of experiments aimed at improving our understanding of stellar explosions – benefiting from interactions with astronomers and theorists/modellers

Future: FAIR, FRIB, RIKEN, TRIUMF – radioactive beams

Experiments at smaller accelerator labs:

these complement – and guide – those at bigger places

Thanks to...

- Collaborators:
 - DRAGON collaboration (TRIUMF)
 - Hendrik Schatz's group (NSCL Michigan State University)
 - Shigeru Kubono's group (CNS U. of Tokyo, RIKEN)
- Technical staff at these labs
- and :

Canada Foundation for Innovation Fondation canadienne pour l'innovation

