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Introduction 
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•  Nuclear-plasma interactions in Neutron-rich High 
Energy Density Plasmas (nHEDP)  

•  Nucleosynthesis in stellar nHEDPs 
•  Nucleosynthesis at the National Ignition Facility 
•  Results from NIF – 196mAu/196gAu 
•  Other planned and potential experiments 

– NIF-based exploding pusher with 134Xe 
– Accelerator-based using Au beams 
–  Petawatt-laser beam-target experiment (Au) 

•  Final questions/Summary Nuclear Level Density and Radiative Strength is crucial 
to understanding the formation of elements in nHEDPs 



Nuclear-Plasma Interactions (NPI) can excite nuclear states with 
energies comparable to those of the surrounding plasma 

Nucleus HEDP 

How rapid are these interactions? 
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Excitation time scales for 73Ge  
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NEEC/NEET rates are very sensitive to the 
underlying atomic structure 



Roughly half of the elements with 26≤Z≤83 are formed via slow 
neutron capture in an astrophysical high energy density plasmas 

Can we use NIF to study the effects of the HEDP on (n,γ) nucleosynthesis? 
*Busso, Gallino and Wasserburg, Annu. Rev. Astron. Astrophys. 1999. 37:239–309 

NIF @ 1014 neutrons crams 2800 years* of neutron capture into every shot 

= Prediction from 6 leading  
   modeling groups prior to  
   measurement 
= Measured value 

F. Kappeler et al., 
has shown that 
modeled (n,γ) 

cross sections are 
highly uncertain 

x6 

x3 

Goal: ±30% accuracy 

R.A. Ward, Ap. J. 216: 540-547, 1977, Z.S. Nemeth et al., Ap. J. 426 357-365, (1994) 
T. Hayakawa, et al., AIP Conf. Proc. 1238, 225 (2010), doi: 10.1063/1.3455935 



An additional complication is that many important* s-process 
branch point nuclei have low-lying excited states whose 

population can influence σ(n,γ) and β-decay lifetimes 

S-process (n,γ) enhancement due to excited states*	


*Bao & Kappeler At. Dat. Nucl. Dat. Tables 76, 70–154 (2000)	
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79Se	
 7/2+	
 95.77	
 1/2-	

85Kr	
 9/2+	
 304.871	
 1/2-	

147Pm	
 7/2+	
 91.1	
 5/2+	

151Sm	
 5/2–	
 4.821	
 3/2-	

163Ho	
 7/2–	
 100.03	
 9/2-	

170Tm	
 1-	
 38.7139	
 2-	
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 5.0361	
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 7/2+	
 30.7	
 9/2+	
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 2-	
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 4-	

205Pb	
 5/2-	
 703.3	
 7/2-	

185W	
 3/2-	
 23.547	
 1/2-	


NIF (or LMJ) are the only places where (n,γ) 	


might be measured on ground+excited states	
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NIF concentrates all 192 beam 
energy in a football stadium-sized 

fac.	






The high e, γ  and n-flux in a NIF capsule might allows us to 
explore reactions on short-lived nuclear states 
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Option #1: Excite a target nucleus with the plasma then hit it with neutrons 

Option #2: Excite a target nucleus with neutrons then interact with the plasma 

Step #2 Step #1 

Excited State Reaction Possibilities 

Josh Brown 
EBSS attendee 

≈1027-33 cm-2 s-1 

(fluence=1017-22cm-2) 

High Neutron Flux 

NIF capsule/hohlraum 



Time Sequence 
1.  Shot 
2.  6-12 hours later DIM removed, samples collected and 

transported to Building 151 counting facility 
3.  2-3 days later data becomes available 

Diagnostic Insertion Manipulator (DIM)	


 50 cm	

Equatorial 	


DIM	


Passive Particle Detector 
Blast Shield removed  
post-shot & counted  

First hints of NPI at NIF: Radioactive 196Au and 198Au 
from (n,2n) and (n,γ) on the 197Au hohlraum 
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197Au 196Au 

Sn=6.642 MeV 

This is entirely new Nuclear Physics 
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The 9.7 hour 12- isomer in 196Au might allow us to explore  
the interaction of highly-excited states with a HEDP? 

Fraction 
feeding 
isomer 



A survey of (n,γ) resonance widths* shows that Ex≈4-5 MeV���
quasi-continuum lifetime are on the order of τDT-burn/P	


*RIPL-2 "obninsk" compilation	


Lifetimes at Sn	


**T. Døssing & E. Vigezzi 	

Nuclear Physics A 587 (1995) 13-35	


This could play a role in high-flux astrophysical scenarios (supernovae, etc.)	




Radioactive 196Au collected from the pole and waist of the 
NIF come from very different plasma conditions 

D. Eder et a., UCRL-JRNL-206693 
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Polar Au comes from a HEDP  
while equatorial Au does not  

Npole
Au

Nequator
Au ≈10−2



Is debris from the NIF hohlraum suggesting that the 
Jπ=12- isomer feeding is being effected by NPIs?  

Measured 196mAu/
196gAu value: 
6.94±0.14% 

 
 
 

Measured 196mAu/196gAu 
Equator: 6.95±0.08%±0.27% 

Pole: 6.34±0.27%±0.25% 

Rm/g
pole

Rm/g
equator = 0.91± 0.04%



If we assume a given fraction of the poiar Au is hot 
we can determine the actual m/g ratio 
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Rm/g
actual Fhot = 0.2( ) = 4.06±1.35%



Option #2: A “better” NIF experiment using a  
134Xe-doped “exploding pusher” capsule 

We maximize both neutron 
flux and plasma density by 
placing a 134Xe dopant nuclei 
in a direct-drive target  

…plus a “control” sample 
outside the plasma in a 
sample positioner 50cm 
from the target 

Diameter of holder is 5cm – same as SRC foil"

Glass/CH pusher (10 µm) 

Fusion 
neutrons 
interact with 
Xe on way 
out of target 

DT gas 
0.03% 134Xe 

 
 
 

5.243 d 
11/2- 

3/2+ 

133Xe 
2.19 d 



Exploding pusher test: 124Xe,126Xe-doped 
capsule 

Radioactive 133m.gXe can be pumped out  of NIF minutes after a shot  
using the RAGS (Radiochemical Analysis of Gaseous Samples) system 

Collection efficiency > 63% has been demonstrated 

RDIGS ≡

Ncapsule
133mXe

Ncapsule
133g Xe

NSRC
133mXe

NSRC
133g Xe

NPI effects can observed using the  
Double-Isomer-to-Ground State  

(DIGS) Ratio 



To an accelerator beam, an ordinary 
target looks like an electron beam, a 
“semi-ordered plasma.” 

e- 

e- 

e- 

e- 

~2.5-5 keV 

≥100 µm natU target ≈1 µm 13C target 

198Au 
2- 
12- 

197Au @  
5-10 MeV/amu 

t≈0 fs 
13C(197Au,198AuE≈6-7 MeV)12C 

t≈11 fs 

t≈2 ps 

6-8 MeV 

< 1 MeV 

t>1 ns 

First test experiment fielded at LBNL 3/13 
– 198Au formed, but no isomer was formed 

due to low beam energy (4.2 MeV/amu)  
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R ≡

Nclose

198mAu

Nclose

198gAu

N far

198mAu

N far

198gAu

Option #3: A complementary accelerator-based  
experiment can also be performed using GeV Au beams 

B. Daub (UCB) 

Plasma Properties NIF LBNL 
Electron Fluence (cm-2) ≈3x1022 ≈1020 

Temperatures (keV) Te≈5-50,Tg=0.3 Te≈2-20,Tg=n.a. 
 



Option #4: We can use protons from a petawatt 
laser to make excited 196Au via 198Pt(p,3n) 

K. Markey  

Target Normal Sheath Acceleration 



TNSA proton based nuclear-plasma experiment 
make 196m,gAu using the 198Pt(p,3n) reaction 

≈1 mm 

Use TNSA protons from a petawtt laser to 
make an excited nucleus via the  
198Pt(p,3n)196m,gAu 
 

First experiment: Platinum in a plasma state when the protons hit 
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Control experiment: Platinum put into a plasma state after the protons hit 



The TNSA proton spectrum can be estimated  
using recent “state of the art” results 

•  Results from Flippo (2008) at LANL show >10-fold increase in high-
energy proton production in shaped targets.  Laser power < 100 TW. 

The 198Pt(p,3n) 
reaction is 

best drive by 
protons with 

20 < Ep (MeV) 
< 30 

 
Np ≈ 5x109 

197Au(n,2n) 
198Pt(p,3n) 
197Au(nth,γ)   

 196Au Spin Distribution 
(EMPIRE)  

More recent results from Roth suggest an even harder proton flux 
From the related BOA mechanism (Break Out Afterbuner) 



Long-pulse laser produces a variety of  
plasma conditions 

Laser 

1D Radiation Hydrodynamics simulations complements of P.F. Davis 

Laser 

Electron density vs. Radius Electron temperature vs. Radius 

Plasma Properties NIF TNSA 
Electron Fluence (cm-2) ≈3x1022 ≈1020-21 

Temperatures (keV) Te≈5-50,Tg=0.3 Te≈0.2-3,Tg=0.2 
 



Summary 

M. Wiedeking et al., Phys. Rev. Lett. 108, 162503 (2012) 

•  Interactions between highly-excited nuclear states and 
HEDPS can profoundly effect nucleosynthesis 

•  We have hints of this happening right now at NIF 

•  Outstanding questions: 
–  What are the appropriate 

atomic rates? 
–  What is the ability of highly 

excited nuclei to absorb/
emit virtual photons from 
NEEC/NEET? – F(Eγ) 

–  What is the nuclear level 
density and width at Ex≈Sn 
including spin! 




