

Nuclear-Plasma Interactions at NIF and accelerator labs

Exotic Beams Summer School Lawrence Berkley National Laboratory Berkeley CA

> Lee Bernstein August 3, 2013

LLNL PRES pending

Lawrence Livermore National Laboratory • National Ignition Facility & Photon Science

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

Collaborators – We need lots of them!

D.H.G. Schneider, W. Stoeffl, R. Bionta,
D.L. Bleuel, C. Cerjan, J.A.Caggiano,
R. Fortner, P.M. Grant, A. Kritcher,
L. Dauffy, R. Hatarik, C. Hagmann,
K. Moody, D.P. McNabb, J. Gostic,
D. Shaughnessy, D. Sayre,
C. Yeamans – <u>LLNL</u>

B. Goldblum, N. M. Brickner,
J. A. Brown, B. H. Daub, P. F. Davis,
K. Van Bibber, J. Vujic – <u>U.C. Berkeley</u>

R.B. Firestone, S. Basunia, A. M. Hurst, A. Rogers – <u>LBNL</u>

S. Siem, F. Giacoppo, A. Gorgen,

T. Renstrøm, A.C. Larsen, M. Guttormsen

– <u>U. of Oslo</u>

G. Gosselin, P. Morel, V. Meot – <u>CEA-DAM (BIII)</u>

M. Wiedeking – <u>iThemba Labs</u>

C. Brune, T. Massey, A. Schiller – Ohio U.

M. Wiescher – <u>Notre Dame</u> K.-H. Langanke – <u>GSI</u>

Introduction

- Nuclear-plasma interactions in Neutron-rich High Energy Density Plasmas (nHEDP)
- Nucleosynthesis in stellar nHEDPs
- Nucleosynthesis at the National Ignition Facility
- Results from NIF ^{196m}Au/^{196g}Au
- Other planned and potential experiments
 - NIF-based exploding pusher with ¹³⁴Xe
 - Accelerator-based using Au beams
 - Petawatt-laser beam-target experiment (Au)

Nuclear Level Density and Radiative Strength is crucial to understanding the formation of elements in nHEDPs Nuclear-Plasma Interactions (NPI) can excite nuclear states with energies comparable to those of the surrounding plasma

Excitation time scales for ⁷³Ge

Excitation time scales for ¹⁶⁹Tm

NEEC/NEET rates are very sensitive to the underlying atomic structure

Pascal MOREL, Gilbert GOSSELIN, Vincent MEOT, CEA/DAM/DIF

Roughly half of the elements with $26 \le Z \le 83$ are formed via slow neutron capture in an *astrophysical high energy density plasmas*

NIF @ 10¹⁴ neutrons crams 2800 years* of neutron capture into every shot

Can we use NIF to study the effects of the HEDP on (n,γ) nucleosynthesis?

*Busso, Gallino and Wasserburg, Annu. Rev. Astron. Astrophys. 1999. 37:239–309

R.A. Ward, Ap. J. **216**: 540-547, 1977, <u>Z.S. Nemeth et al., Ap. J. 426 357-365, (1994)</u> T. Hayakawa, *et al.*, AIP Conf. Proc. **1238**, 225 (2010), doi: 10.1063/1.3455935 An additional complication is that many important^{*} s-process branch point nuclei have low-lying excited states whose population can influence $\sigma_{(n,\nu)}$ and β -decay lifetimes

	N	Π	F	
-				

NIF (or LMJ) are the *only* places where (n,γ)

might be measured on ground+excited states

NIF concentrates all 192 laser beam energy in a football stadium-sized facility into a mm³

Matter
Temperature>108 KRadiation
Temperature>3.5 x 106 KDensities>103 g/cm3Pressures>10¹¹ atm

The high e, γ and n-flux in a NIF capsule might allows us to explore reactions on short-lived nuclear states

NIF

Option #1: Excite a target nucleus with the plasma then hit it with neutrons

Option #2: Excite a target nucleus with neutrons then interact with the plasma

First hints of NPI at NIF: Radioactive ¹⁹⁶Au and ¹⁹⁸Au from (n,2n) and (n, γ) on the ¹⁹⁷Au hohlraum

Diagnostic Insertion Manipulator (DIM)

<u>Time Sequence</u>

- 1. Shot
- 2. 6-12 hours later DIM removed, samples collected and transported to Building 151 counting facility
- 3. 2-3 days later data becomes available

The 9.7 hour 12⁻ isomer in ¹⁹⁶Au might allow us to explore the interaction of highly-excited states with a HEDP?

A survey of (n,γ) resonance widths^{*} shows that $E_x \approx 4-5 MeV$ quasi-continuum lifetime are on the order of $\tau_{DT-burn}/P$

NIF

This could play a role in high-flux astrophysical scenarios (supernovae, etc.)

^{*}RIPL-2 "obninsk" compilation

Radioactive ¹⁹⁶Au collected from the pole and waist of the NIF come from very different plasma conditions

Is debris from the NIF hohlraum suggesting that the $J^{\pi}=12^{-}$ isomer feeding is being effected by NPIs?

m/g

If we assume a given fraction of the poiar Au is hot we can determine the actual m/g ratio

Option #2: A "better" NIF experiment using a ¹³⁴Xe-doped "exploding pusher" capsule

We maximize both neutron flux and plasma density by placing a ¹³⁴Xe dopant nuclei in a **direct-drive** target

...plus a "control" sample outside the plasma in a sample positioner 50cm from the target

Radioactive ^{133m.g}Xe can be pumped out of NIF minutes after a shot using the RAGS (Radiochemical Analysis of Gaseous Samples) system

NPI effects can observed using the Double-Isomer-to-Ground State (DIGS) Ratio

Exploding pusher test: ¹²⁴Xe,¹²⁶Xe-doped capsule NIF shot N120228-001-999

Collection efficiency > 63% has been demonstrated

Option #3: A complementary accelerator-based experiment can also be performed using *GeV* Au beams

Option #4: We can use protons from a petawatt laser to make excited ¹⁹⁶Au via ¹⁹⁸Pt(p,3n)

Target Normal Sheath Acceleration

NIF

K. Markey

TNSA proton based nuclear-plasma experiment make ^{196m,g}Au using the ¹⁹⁸Pt(p,3n) reaction

Use TNSA protons from a petawtt laser to make an excited nucleus via the ¹⁹⁸Pt(p,3n)^{196m,g}Au

Use a long pulse (ns) laser to place the target nuclides into an HED plasma state a fixed amount of time after the TNSA protons arrive

NIF

First experiment: Platinum in a plasma state when the protons hit

Control experiment: Platinum put into a plasma state after the protons hit

The TNSA proton spectrum can be estimated using recent "state of the art" results

NIF

 Results from Flippo (2008) at LANL show >10-fold increase in highenergy proton production in shaped targets *Laser nower < 100 TW*

More recent results from *Roth* suggest an even harder proton flux From the related <u>BOA</u> mechanism (<u>Break Out Afterbuner</u>)

Long-pulse laser produces a variety of plasma conditions

NIF

1D Radiation Hydrodynamics simulations complements of P.F. Davis

Plasma Properties	NIF	TNSA
Electron Fluence (cm ⁻²)	≈3x10 ²²	≈10 ²⁰⁻²¹
Temperatures (keV)	<i>T_e</i> ≈5-50, <i>T_g</i> =0.3	<i>T_e</i> ≈0.2-3, <i>T_g</i> =0.2

Summary

- Interactions between highly-excited nuclear states and HEDPS can profoundly effect nucleosynthesis
- We have hints of this happening right now at NIF
- Outstanding questions:
 - What are the appropriate atomic rates?

